Cauchy Theorem for a triangle

Theorem

Let D \subseteq \mathbb{C} be a domain, f : D \to \mathbb{C} a differentiable function. Let T be a triangle such that \bar{T} \subset D. Then

\left| \int\limits_{\partial T} f \right| = 0

Proof

Assume

\left| \int\limits_{\partial T} f \right| = c \geq 0.

It will be shown that c = 0.

First, subdivide T into four triangles, marked T^{1}, T^{2}, T^{3}, T^{4} by joining the midpoints on the sides. Then it is true that

\int\limits_{\partial T} f = \sum\limits_{r=1}^{4} \left( \int\limits_{T^{r}} f \right).

Giving that

c = \left| \int\limits_{\partial T} f \right| \leq \sum\limits_{r=1}^{4} \left| \int\limits_{T^{r}} f \right|

Choose r such that

\left| \int\limits_{\partial T^{r}} f \right| \geq \frac{1}{4} c

Defining T^{r} as T_{1}, then

\left| \int\limits_{\partial T_{1}} f \right| \geq \frac{1}{4} c and L\left(\partial T_{1} \right) = \frac{1}{2} L\left(\partial T\right)

(where L\left( \gamma \right) describes length of curve).

Repeat this process of subdivision to get a sequence of triangles

T \supset T_{1} \supset T_{2} \supset \ldots \supset \ldots T_{n} \supset \ldots

satisfying that

\left| \int\limits_{\partial T_{n}} f \right| \geq \left(\frac{1}{4}\right)^{n}c and L\left(\partial T_{1} \right) = \left( \frac{1}{2} \right)^{n} L\left(\partial T\right).

Claim: The nested sequence \bar{T} \supset \bar{T_{1}} \supset \bar{T_{2}} \supset \ldots \supset \bar{T_{n}} \supset \ldots contains a point z_{0} \in \bigcap\limits_{n=1}^{\infty} \bar{T_{n}}. On each step choose a point z_{0} \in T_{n}. Then it is easy to show that \left( z_{n} \right) is a Cauchy sequence. Then \left( z_{n} \right) converges to a point z_{0} \in \bigcap\limits_{n=1}^{\infty} \bar{T_{n}} since each of the \bar{T_{n}}s are closed, hence, proving the claim.

We can generate another estimate of c using the fact that f is differentiable. Since f is differentiable at z_{0}, for a given \varepsilon > 0 there exists \delta > 0 such that

0 < \left| z - z_{0} \right| \delta implies \left| \frac{f\left(z\right) - f\left(z_{0}\right)}{z-z_{0}} - f'\left(z_{0}\right)\right| < \varepsilon

which can be rewritten as

0 < \left| z - z_{0} \right| \delta implies \left| f\left(z\right) - f\left(z_{0}\right) - f'\left(z_{0}\right)\left(z-z_{0}\right)\right| < \varepsilon\left|z-z_{0}\right|

For z \in T_{n} we have \left| z-z_{0} \right| < L\left(\partial\right), and so, by the Estimation Lemma we have that

\left| \int\limits_{\partial T_{n}} \left\{f\left(z\right) - \left(f\left(z_{0}\right) + f'\left(z_{0}\right)\left(z-z_{0}\right)\right)\right\} dz \right| \leq \varepsilon L^{2}\left(\partial\right)

As f\left(z_{0}\right) + f'\left(z_{0}\right)\left(z-z_{0}\right) is of the form  \alpha z + \beta it has an antiderivative in D, and so \int\limits_{\partial T_{n}} f\left(z_{0}\right) + f'\left(z_{0}\right)\left(z-z_{0}\right) = 0, and the above is then just

\left| \int\limits_{\partial T_{n}} f\left(z\right) dz \right| \leq \varepsilon L^{2}\left(\partial\right)

Notice that

\left(\frac{1}{4}\right)^{n}c \leq \left| \int\limits_{\partial T_{n}} f\left(z\right) dz \right| \leq \varepsilon L^{2}\left(\partial\right) = \left(\frac{1}{4}\right)^{n} \varepsilon L^{2}\left(\partial\right)

Giving

c \leq \varepsilon L^{2}\left(\partial\right)

Since \varepsilon > 0 can be chosen arbitrary small, then c = 0.


This article is issued from Wikiversity - version of the Tuesday, January 04, 2011. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.