Cauchy-Riemann Equations

Theorem

Let G \subseteq \mathbb{C} be an open subset. Let the function  f = u + i v be differentiable at a point z = x+iy \in G. Then all partial derivatives of  u and  v exist at \left( x,y \right) and the following Cauchy-Riemann equations hold:

\dfrac{\partial u}{\partial x} \left( x,y \right)  = \dfrac{\partial v}{\partial y} \left( x,y \right)

\dfrac{\partial u}{\partial y} \left( x,y \right) = - \dfrac{\partial v}{\partial x} \left( x,y \right)

In this case, the derivative of f at z can be represented by the formula

f'\left( z \right) = \dfrac{\partial u}{\partial x} \left( x,y \right) - i \dfrac{\partial u}{\partial y} \left( x,y \right) = \dfrac{\partial v}{\partial y} \left( x,y \right) +  i \dfrac{\partial v}{\partial x} \left( x,y \right)

Proof

Let h := k+i0 \left( k \in \mathbb{R} \right). Then

\begin{array}{rcl}
f'\left( z \right) & = & \lim\limits_{h \to 0} \dfrac{f\left( z+h \right) - f\left( z \right)}{h} \\
& = &\lim\limits_{k \to 0} \dfrac{u\left( x+k,y \right) + iv\left(x+k,y \right)  -u\left( x,y \right)  -iv\left( x,y \right) }{k} \\
& = &\lim\limits_{k \to 0} \dfrac{u\left( x+k,y \right) - u\left( x,y \right) }{k} +i\dfrac{v\left( x+k,y \right) - v\left( x,y \right)  }{k} \\
& = & \dfrac{\partial u}{\partial x} \left( x,y \right)  + i\dfrac{\partial v}{\partial x} \left( x,y \right) \end{array}

Let h := 0+il \left( l \in \mathbb{R} \right). Then

\begin{array}{rcl}
f'\left( z \right) & = & \lim\limits_{h \to 0} \dfrac{f\left( z+h \right) - f\left( z \right)}{h}\\
& = &\lim\limits_{l \to 0} \dfrac{u\left( x,y+l \right) + iv\left(x,y+l \right)  -u\left( x,y \right)  -iv\left( x,y \right) }{il}\\
& = &\lim\limits_{l \to 0} \dfrac{1}{i}\dfrac{u\left( x,y+l \right) - u\left( x,y \right) }{l} +\dfrac{v\left( x,y+l \right) - v\left( x,y \right)  }{l}\\
& = & \dfrac{\partial v}{\partial y} \left( x,y \right)  - i\dfrac{\partial u}{\partial y} \left( x,y \right)
\end{array}

Hence:

 f'\left( z \right) =\dfrac{\partial u}{\partial x} \left( x,y \right)  + i\dfrac{\partial v}{\partial x} \left( x,y \right)  = \dfrac{\partial v}{\partial y} \left( x,y \right)  - i\dfrac{\partial u}{\partial y} \left( x,y \right)

Equating the real and imaginary parts, we get the Cauchy-Riemann equations. The representation formula follows from the above line and the Cauchy-Riemann equations.

This article is issued from Wikiversity - version of the Tuesday, October 08, 2013. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.