Boundary Value Problems/Problem Lookup

< Boundary Value Problems
Click here to return to BVP main page Boundary Value Problems

A directory/database of BVP problems.

PDE BCs ICs Click for link to solution
1 2 3 4
u_{xx}= \frac{1}{k} u_t  u(0,t)=0 \mbox{  } u(L,t)=0  u(x,0) = f(x) BVP_1D_heat_hom_dirichlet_hom
u_{xx}= \frac{1}{k} u_t  u(0,t)=T_1 \mbox{  } u(L,t)=T_2  u(x,0) = f(x) BVP_1D_heat_hom_dirichlet_non_hom
u_{xx}= \frac{1}{k} u_t  u_x(0,t)=0 \mbox{  } u(L,t)=T_1  u(x,0) = f(x) BVP_1D_heat_hom_neumann_dirichlet
u_{xx}= \frac{1}{k} u_t  u_x(0,t)=-k(u(0,t)-A) \mbox{  } u(L,t)=T_2  u(x,0) = f(x) BVP_1D_heat_hom_dirichlet_non_hom
u_{xx} + g(x) = \frac{1}{k} u_t  u(0,t)=T_1 \mbox{  } u(L,t)=T_2  u(x,0) = f(x) BVP_1D_heat_hom_dirichlet_non_hom
u_{xx}= \frac{1}{k} u_t + k(u(x,t)-A)  u(0,t)=T_1 \mbox{  } u(L,t)=T_2  u(x,0) = f(x) BVP_1D_heat_nonhom_dirichlet_non_hom
u_{xx}= \frac{1}{k} u_t  u(0,t)=T_1 \mbox{  } u(L,t)=T_2  u(x,0) = f(x) BVP_2D_Laplaces_hom_BCs_non_hom
\displaystyle \nabla^2 u= 0  u(0,y)=\pi-y
 u(1,x)=0
 u_y(x,0) = x
 u_y(x,\pi) = x
none
click here to see pdf of Maple file that has solution.
\displaystyle u_{xx} = u_{tt} + 10  u(0,t)=0
 u(1,t)=0
 u(x,0) = 0
 u_t(x,0) = x(1-x)
Click here to see pdf of a Maple file that has solution.
\displaystyle \nabla^2 u= \frac{1}{4}u_t  u(x,0,t)=0
 u(x,5,t)=0
 u(0,y,t) = 0
 u(3,y,t) = 0
  u(x,y,t)= sin(\frac{\pi x}{3}) sin(\frac{\pi y}{5})
click here to see pdf of Maple file that has solution.
\displaystyle \nabla^2 u= \frac{1}{4}u_t + F(x,y,t)  u(x,0,t)=0
 u(x,M,t)=0
 u(0,y,t) = 0
 u(L,y,t) = 0
  u(x,y,t)= sin(\frac{\pi x}{L}) sin(\frac{\pi y}{M})
}
This article is issued from Wikiversity - version of the Tuesday, February 23, 2016. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.