Bessel functions

Resource type: this resource contains a lecture or lecture notes.

Definition

The Bessel function is canonical solution to Bessel's differential equation x^2y''+xy'+(x^2-\nu^2)y=0, \, \nu \in \mathbb{C}~. Solutions were first introduced by Daniel Bernoulli, but later generalized by Friedrich Bessel. The most common and most important case of the Bessel function is when \nu \in \mathbb{Z}~, which is called the order of the Bessel function.

Bessel functions arise when the method of separation of variables is applied to the Laplace or Helmholtz equation in cylindrical or spherical coordinates. They are very important for many problems dealing with physical phenomena, like wave or heat propagation.

Derivation of Bessel function using Frobenius's Method

Consider the Bessel equation:

x^2y''+xy'+(x^2-\nu^2)y=0

\Leftrightarrow y'' + \underbrace{\left ( \frac{1}{x} \right )}_{p(x)} y'+  \underbrace{\left ( 1- \frac{\nu^2}{x^2} \right )}_{q(x)} y = 0

We're seeking solutions near x_0 = 0~. Since:


\begin{align}
xp(x) & = 1 \\
x^2q(x) & = x^2 - \nu^2
\end{align}

are power series in x, x_0=0 is a regular singular point of the Bessel equation. This allows Frobenius's method to be applied.

We are seeking solutions of the form:

y(x)=\sum_{n=0}^\infty C_nx^{n+r}, \, x > 0, C_n \neq 0

Differentiating yields:


\begin{align}
y'(x) & =\sum_{n=0}^\infty (n+r)C_nx^{n+r-1} \\
y''(x) & =\sum_{n=0}^\infty (n+r-1)(n+r)C_nx^{n+r-2}
\end{align}

Conditions for C_n must be found. Substituting our expressions back into the Bessel equation:


\begin{align}
0 & =x^2y''+xy'+(x^2-\nu^2)y \\
& = \sum_{n=0}^\infty (n+r-1)(n+r)C_nx^{n+r}+\sum_{n=0}^\infty (n+r)C_nx^{n+r}+\sum_{n=0}^\infty C_nx^{n+r+2} - \sum_{n=0}^\infty \nu^2 C_n x^{n+r}
\end{align}

A substitution must be made in indices:m=n+2~. This yields:


\begin{align}
0 & =\sum_{n=0}^\infty \left [ (n+r-1)(n+r)+(n+r)-\nu^2 \right ] C_nx^{n+r} + \sum_{m=2}^\infty C_{m-2}x^{m+r} \\
& =\sum_{n=0}^\infty \left [ (n+r)^2-\nu^2 \right ] C_nx^{n+r} + \sum_{n=2}^\infty C_{n-2}x^{n+r} \\
& =(r^2-\nu^2)C_0x^r+ [(r+1)^2-\nu^2]C_1x^{r+1}+\sum_{n=2}^\infty \left \{ [(n+r)^2-\nu^2]C_n+C_{n-2} \right \} x^{n+r}
\end{align}

Dividing the equation above by x^r~(x>0)~ yields:

0 =(r^2-\nu^2)C_0+ [(r+1)^2-\nu^2]C_1x+\sum_{n=2}^\infty \left \{ [(n+r)^2-\nu^2]C_n+C_{n-2} \right \} x^n

By the "Identity Theorem" (which states that xn is linearly independent), it follows that:


\begin{align}
& (r^2-\nu^2)C_0 = 0 \\
& [(r+1)^2-\nu^2]C_1=0 \\
& [(n+r)^2-\nu^2]C_n+C_{n-2}=0, \, n=2,3,4,\cdots
\end{align}

By assumption, C_0 \neq 0~, so we define a function:

h(r):=r^2-\nu^2=0 \quad \text{(indicial equation)}

The possible values for r=\pm \nu~. Let r_1:=\nu, \, r_2:=-\nu~ and for convenience, let \nu > 0~. We obtain the following recurrence relations for C_n:


\begin{cases}
C_0 \neq 0 \quad \text{(arbitrarily defined)} \\
C_1 = 0 \quad \text{(follows from } [(r+1)^2-\nu^2]C_1=0 \text{)} \\
\underbrace{[(n+r)^2-\nu^2]}_{h(n+r)}C_n=-C_{n-2}, \, n=2,3,4,\cdots
\end{cases}

To get a solution to the Bessel equation, choose r_1=\nu~, \, \nu \neq 0~. Thus, h(n+r)=h(n+\nu) \neq 0, \, n=2,3,4,\cdots~. We can now solve for C_n:

C_n=-\frac{C_{n-2}}{(n+\nu)^2-\nu^2}=-\frac{C_{n-2}}{n^2+2n\nu}

We end up with the recursion:


\begin{cases}
C_0 \neq 0 \\
C_1 = 0 \\
C_n = -\frac{C_{n-2}}{n(n+2\nu)}, \, n=2,3,4,\cdots
\end{cases}

Since the recursion has depth 2 and C_1=0, it follows that:


\begin{cases}
C_0 \neq 0 \\
C_{2n+1} = 0, n=0,1,2,\cdots \\
C_{2n} = -\frac{C_{2n-2}}{2n(2n+2\nu)} = -\frac{C_{2n-2}}{2^2n(n+\nu)}, \, n=1,2,3,\cdots
\end{cases}

Because of the recursion, we get the following set of terms:


\begin{align}
& C_0 \neq 0 \\
& C_2 = - \frac{C_0}{2^2 \cdot 1 \cdot (1+\nu)} \\
& C_4 = C_{2\cdot 2} = - \frac{C_2}{2^2 \cdot 2 \cdot (2+\nu)} = \frac{(-1)^2 C_0}{2^4 \cdot 1 \cdot 2 \cdot (1+\nu)(2+\nu)} = \frac{(-1)^2 C_0}{2^4 \cdot 2! \cdot (1+\nu)(2+\nu)} \\
& C_6 = C_{2\cdot 3} = - \frac{C_4}{2^2 \cdot 3 \cdot (3+\nu)} = \frac{(-1)^3 C_0}{2^6 \cdot 3! \cdot (1+\nu)(2+\nu)(3+\nu)} \\
& \vdots \\
& C_{2n}=\frac{(-1)^n C_0}{2^{2n} \cdot n! \cdot (1+\nu)(2+\nu)\cdots(n+\nu)}, \, n=1,2,3,\cdots
\end{align}

In order to simplify the expansion of y, we normalize C_0 and choose:

C_0:=\frac{1}{2^\nu \Gamma(1+\nu)}

This simplifies our general term to:

C_{2n}=\frac{(-1)^n}{2^{2n+\nu} \cdot n! \cdot \Gamma(n+1+\nu)}, \, n=0,1,2,\cdots

The first solution to the Bessel equation can be written like this:

J_\nu (x) = \sum_{n=0}^\infty \frac{(-1)^n}{n! \cdot \Gamma(n+1+\nu)} \left ( \frac{x}{2} \right )^{2n+\nu}

Gamma Function

Definition

The definition of the gamma function is defined on x \in \mathbb{R} such that x > 0:

\Gamma(x):=\int\limits_0^\infty t^{x-1}e^{-t} dt

Properties of the Gamma Function

Here are some theorems for the gamma function:

  1. \Gamma(x+1)=x \Gamma(x)
  2. \Gamma(1)=1
  3. \Gamma(n+1)=n!
  4. \Gamma \left ( \frac{1}{2} \right ) = \sqrt{\pi}

Second Solution of the Bessel Equation

For the case that \nu \not\in \mathbb{N}, \nu > 0, we can define a second solution to the Bessel function. In this case, n+1-\nu \in \mathbb{R} \backslash (-\mathbb{N} \cup \{ 0 \}) and therefore \Gamma (n+1-\nu) is defined. Consider:

J_{-\nu}(x):=\sum_{n=0}^\infty \frac{(-1)^n}{n! \cdot \Gamma(n+1-\nu)} \left ( \frac{x}{2} \right )^{2n-\nu}

Some theorems for this new function:

These theorems are proved easily, but will not be shown here.

Bessel Functions of the Second Kind

A second function that is defined on \nu \in \mathbb{R}, \nu \not\in \mathbb{Z} takes the form:

Y_\nu(x):=\frac{\cos (\nu \pi) J_\nu(x)-J_{-\nu}(x)}{\sin (\nu \pi)}

Deriving this result is fairly difficult and will not be shown here. This function, called the Bessel function of the second kind of order \nu, is linearly independent from J_\nu(x).

Hankel Functions, Bessel Functions of the Third Kind

A third type of function (complex-valued) for \nu \in \mathbb{R}, \, \nu \not\in \mathbb{Z}, are:

H_\nu^{(1)} := J_\nu(x)+ i \, Y_\nu(x)

H_\nu^{(2)} := J_\nu(x)- i \, Y_\nu(x)

and are called the Bessel functions of the 3rd kind or Hankel functions of order \nu. The Hankel functions H_\nu^{(1)}, H_\nu^{(2)} are linearly independent.

Complete Solution to the Bessel Equation

For all \nu \in \mathbb{R}, \lambda \in \mathbb{R}, the complete solution of the Bessel equation:

x^2y''+xy'+(\lambda^2x^2-\nu^2)y=0

can be written as:

y(x)=C_1J_\nu(\lambda x)+C_2 Y_\nu(\lambda x)

or:

y(x)=C_1H_\nu^{(1)}(\lambda x)+C_2 H_\nu^{(2)}(\lambda x)~.

If \nu \in \mathbb{R} \backslash \mathbb{Z}~, then:

y(x)=C_1J_\nu(x)+C_2J_{-\nu}(x)~.

Moreover:

Identities

Here are some identities for the Bessel function. They can be deduced with reasonable effort.

Differential Identities

For \nu \in \mathbb{R}:

  1. \left [ x^{\nu} J_{\nu}(x)\right ]' = x^{\nu} J_{\nu-1}(x)

  2. \left [ x^{-\nu} J_{\nu}(x)\right ]' = -x^{-\nu} J_{\nu+1}(x)

  3. \left [ x^{\nu} Y_{\nu}(x)\right ]' = x^{\nu} Y_{\nu-1}(x)

  4. \left [ x^{-\nu} Y_{\nu}(x)\right ]' = -x^{-\nu} Y_{\nu+1}(x)

Corollary:

  1. x J_\nu'(x)+\nu J_\nu(x)=x J_{\nu-1}(x)

  2. x J_\nu'(x)-\nu J_\nu(x)=-x J_{\nu+1}(x)

Corollary (Recursion Formula):

  1. \frac{2 \nu}{x} J_\nu(x) = J_{\nu-1}(x) + J_{\nu+1}(x)

  2. J_\nu'(x)=\frac{1}{2} \left [ J_{\nu-1}(x) - J_{\nu+1}(x) \right ]

Integration Identities

For \nu \in \mathbb{R}:

  1. \int x^{\nu} J_{\nu-1}(x) dx = x^{\nu} J_{\nu}(x)+C

  2. \int x^{-\nu} J_{\nu+1}(x) dx = -x^{-\nu} J_{\nu}(x)+C

Important special cases (\nu = 0,1):

  1. \int x J_0(x) dx = x J_1(x)+C

  2. \int J_1(x) dx = - J_0(x) + C

This article is issued from Wikiversity - version of the Wednesday, November 28, 2012. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.