Astronomy/Atmospheres/Quiz

< Astronomy < Atmospheres
This is a graph of the global mean atmospheric water vapor superimposed on an outline of the Earth. Credit: NASA.

Atmospheric astronomy is a lecture and an article about studying atmospheres explored for or discovered on or above astronomical entities. It may become a lecture as part of the astronomy course on the principles of radiation astronomy.

You are free to take this quiz based on atmospheric astronomy at any time.

To improve your score, read and study the lecture, the links contained within, listed under See also, and in the astronomy resources template. This should give you adequate background to get 100 %.

As a "learning by doing" resource, this quiz helps you to assess your knowledge and understanding of the information, and it is a quiz you may take over and over as a learning resource to improve your knowledge, understanding, test-taking skills, and your score.

A suggestion is to have the lecture available in a separate window.

To master the information and use only your memory while taking the quiz, try rewriting the information from more familiar points of view, or be creative with association.

Enjoy learning by doing!

Quiz

Point added for a correct answer:   
Points for a wrong answer:
Ignore the questions' coefficients:

1. Chemistry phenomena associated with astronomy are

at least three-quarters of the human genome
molecules
atmospheres
pressure
ions
plastic

2. True or False, An aurora seen from Australia may be a blue radiation source.

TRUE
FALSE

3. Which chemical phenomenon are associated with the Earth?

quartz is the second most abundant mineral
an atmosphere containing CO2
green, red, blue, and yellow airglow
the production and escape of hot H+ ions
oxygen emissions
helium ions

4. Which of the following are radiation astronomy phenomena associated with the gaseous-object Neptune?

Voyager 2
blue rays
clouds
neutron emission
polar coronal holes
meteor emission
rotation

5. True or False, An aurora seen from Australia may be a first blue radiation source.

TRUE
FALSE

6. Complete the text:

Regarding a blue haze layer near the south polar region of Titan, the difference in color above and nearer the could be due to of the haze.

Your score is 0 / 0

Research

Hypothesis:

  1. Every astronomical object that is spheroidal and gaseous in exterior appearance has a rocky object at its core.

Control groups

This is an image of a Lewis rat. Credit: Charles River Laboratories.

The findings demonstrate a statistically systematic change from the status quo or the control group.

“In the design of experiments, treatments [or special properties or characteristics] are applied to [or observed in] experimental units in the treatment group(s).[1] In comparative experiments, members of the complementary group, the control group, receive either no treatment or a standard treatment.[2]"[3]

Proof of concept

Def. a “short and/or incomplete realization of a certain method or idea to demonstrate its feasibility"[4] is called a proof of concept.

Def. evidence that demonstrates that a concept is possible is called proof of concept.

The proof-of-concept structure consists of

  1. background,
  2. procedures,
  3. findings, and
  4. interpretation.[5]

See also

References

  1. Klaus Hinkelmann, Oscar Kempthorne (2008). Design and Analysis of Experiments, Volume I: Introduction to Experimental Design (2nd ed.). Wiley. ISBN 978-0-471-72756-9. http://books.google.com/?id=T3wWj2kVYZgC&printsec=frontcover.
  2. R. A. Bailey (2008). Design of comparative experiments. Cambridge University Press. ISBN 978-0-521-68357-9. http://www.cambridge.org/uk/catalogue/catalogue.asp?isbn=9780521683579.
  3. "Treatment and control groups, In: Wikipedia". San Francisco, California: Wikimedia Foundation, Inc. May 18, 2012. Retrieved 2012-05-31.
  4. "proof of concept, In: Wiktionary". San Francisco, California: Wikimedia Foundation, Inc. November 10, 2012. Retrieved 2013-01-13.
  5. Ginger Lehrman and Ian B Hogue, Sarah Palmer, Cheryl Jennings, Celsa A Spina, Ann Wiegand, Alan L Landay, Robert W Coombs, Douglas D Richman, John W Mellors, John M Coffin, Ronald J Bosch, David M Margolis (August 13, 2005). "Depletion of latent HIV-1 infection in vivo: a proof-of-concept study". Lancet 366 (9485): 549-55. doi:10.1016/S0140-6736(05)67098-5. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1894952/. Retrieved 2012-05-09.

External links

This is a research project at http://en.wikiversity.org

Educational level: this is a research resource.
Resource type: this resource is a quiz.
Subject classification: this is an astronomy resource.
This article is issued from Wikiversity - version of the Sunday, March 27, 2016. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.