Basic cardiac anatomy

Basic Cardiac Anatomy Level 1: Blood Flow into and out of the Heart

From an anatomical point of view the human heart is composed of four compartments or chambers. An easy way to remember the compartments of the heart is to imagine the heart composed of two apartments like a duplex. There are two halves to the heart separated by a septum (wall). Each compartment is composed of an atrium (the entrance) and a ventricle (living room). When visitors (blood) arrives at either of the two apartments, it enters the atrium through the doors (valves), then moves through to the living room (ventricle) once again through doors (valves).

Dont break my heart, my achey breaky heart JOEY!!!! ill shoot you!!! Blood arrives at the heart through the veins and leaves via the arteries. For example, when blood returns to the heart after travelling around the entire body, it enters through either the superior or the inferior vena cava. When the blood returns to the left atrium after being oxygenated in the lungs, it does so through the pulmonary veins.

The larger of the two chambers is the left side. This results from the greater distance the blood needs to travel once expulsed: after leaving the left ventricle, blood throughout the entire body is pushed. On the otherhand, blood expulsed from the right ventricle only enters the pulmonary circuit -- the lung circuit -- to be reoxygenated. As such, the myocardium of the left side of the heart is vastly more developed than that of the right side.

Roughly speaking, blood circulates in two ways around the body: through pulmonary and systemic circulation. The total circulation follows a figure eight pattern with the heart in the center, between the two loops. The lungs are supplied by the uppermost loop (pulmonary) and the rest of the body is supplied by through the lower loop (systemic). The blood leaves the heart through left atrium, into the aorta (through the aortic valve) and travels to the upper and lower portions of the body. Blood returns to right atrium via the inferior and superior vena cava. From the right atrium, the blood empties into the right heart ventricle through the opening of the tricuspid valve; the blood leaves the right ventricle through the pulmonary semilunar valve and travels through the pulmonary arteries to the left and right lungs where it is reoxygenated. After oxygenation, the blood returns to the left atrium through the pulmonary veins and it passes through the bicuspid (or mitral) valve to the left ventricle. This process is repeated about 60 times per minute, once for each beat of the heart.

Basic Cardiac Anatomy Level 2: Circulation

Note: The major sidebranches of the aorta (around the aortic bow) have not been shown. Many important vessels (arteries supplying the head, neck, and upper limbs) originate in the aortic bow.


We have learned that the heart consists of two atria (singular atrium) and two ventricula (in English, ventricles or the singular, ventricle.)and that blood circulates around the body in two distinct ways. We will now follow the route blood takes when it travels through the heart, beginning with the blood from the lungs.

Basic Cardiac Anatomy level 3: Blood Supply of the heart

Note: Only the most basic arteries comprising the coronary arterial system are shown here. There are many small branches to each of these arteries; this is only a basic description of the coronary system.

The heart is always working and therefore, needs a continuous uninterrupted supply of fresh oxygenated blood. A system of vessels surrounding the heart, known as the coronary arteries (or simply the coronaries) supply the heart with all the blood it needs. The coronary arteries originate from the aorta ascendens just above the aortic valve. There are two coronaries, one of which splits into two separate coronaries just after its origin; in fact, we could also say that we have three coronaries.

Basic Cardiac Anatomy level 4: Electrical Activity of the Heart

The pumping action of the heart is initiated by electrical stimulation of the right atrium, by a small pocket of tissue called the Sino-Atrial (SA) node. From here, electrical current follows a conduction pathway through to the ventricles. From the SA node, current travels through both atrium, stimulating their contraction, before coming to the Atrio-Ventricular (AV ) node at the junction of the atria and ventricles. Here, conduction is slowed to allow proper contraction of the atrium (and thus adequate filling of the ventricles with blood). From the AV node, curent flows to the bundle of His (located just below the AV node). It then flows down the Left and Right Bundle Branches, on either side of the intraventricular septum, and to the Purkinje fibres in the ventricules, which cause ventricular contraction.

External Links

This article is issued from Wikiversity - version of the Sunday, March 06, 2016. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.