Trigonometry/Inverse Trigonometric Functions

< Trigonometry

The Basic Idea

In the equation

if we are given we can work out .

If we are given , can we work out ?

Look at the graph of and you will see that for or there aren't any answers at all, whilst for other values of there are infinitely many answers.

If

we write the inverse of as follows

Notice the strange notation. It's just a convention, and does not really fit in well with the convention of meaning . However, we are stuck with this notation. It is so widely used and so familiar in mathematical work that in practice it does not cause confusion. On many calculators the alternative notation is used.

A calculator will only give one answer (or error) for . You can get some of the other answers by adding or subtracting multiples of 360°. In a later section we spell out the conventions as to which answer is given by .

arcsin

A common notation used for the inverse functions is the "arcfunction" notation, prefixing the function name by "arc" or sometimes just "a".

,
, and
.

The arcfunctions might perhaps be so named because of the relationship between radian measure of angles and arclength--the arcfunctions yield arc lengths on a unit circle.

The Inverse Functions, Domain and Range

The inverse of sine or cosine for some values has multiple answers and some values does not exist at all. We'd like it if the inverse were a function, but according to the mathematical definition of a function it is not:

is a function because given any x it gives back some value. There is not really a function that is an inverse for because, for example, and have the same value. The inverse 'function' does not know whether to go back to 20° or 160°.

To deal with this we need some more mathematical language. We have mathematical terminology for what a function operates on and where its values end up. A function like needs to be accompanied by some agreement as to what values it can operate on and where they end up. By convention , though is also a valid solution to . So how do we describe this kind of thing?

Example: Reciprocal function

The function is defined on all values of x except for 0. Its domain is the real numbers excluding zero.

Example: Factorial function

The factorial function, operates on the positive whole numbers. As a function f - . The factorial function is usually written by writing an exclamation point after a number. So, 3 factorial is usually written as 3! and it is . 4 factorial is written as 4! and it is .

The domain of the factorial function is the positive whole numbers.


Range of x2

Consider the function

If we use ordinary numbers for x like 37.2 or -1001.56 we always find is a positive number (or zero). The range of is the numbers greater than or equal to zero.

Range of 2x

Consider the function

If we choose the domain of to be the numbers greater than or equal to 1, then the range of is the numbers greater than or equal to two.

More Notation

Interval Notation
  • The notation (1.3,100.7] means all numbers between 1.3 and 100.7, including 100.7 but excluding 1.3.
  • The notation [-59.1,12.5] means all numbers between -59.1 and 12.5, including -59.1 and including 12.5.
  • The notation (0,71.2) means all numbers between 0 and 71.2, excluding 0 and excluding 71.2.

Inverses to Trig functions

Some textbooks 'solve' the problem of inverses for trig functions by defining new functions , , and (all with initial capitals) to equal the original functions but with restricted domain.

With suitably restricted domain the functions , , and (all with initial capitals) do have inverses which are functions too.

The restrictions to allow the inverses to be functions are standard. Here (and for the rest of this page) we are using radians to measure angles rather than degrees:

has domain
has domain ; and
has domain

For each function, the restricted domain includes first-quadrant angles as well as an adjacent quadrant.

Inverses, Really?

It is important to note that because of these restricted domains, the inverse trigonometric functions do not necessarily behave as one might expect an inverse function to behave. While

(following the expected ),
.

For the inverse trigonometric functions, only when is in the range of the inverse function.

The other direction, however: for all to which we can apply the inverse function.

The Inverse Relations

'For completeness', here are definitions of the inverse trigonometric relations based on the inverse trigonometric functions. This section is really mostly about using mathematical notation to express how adding multiples of 360o to an angle gives us another solution for the inverse. Because we are working in radians we're adding multiples of two pi. Some more notation being used here:

This article is issued from Wikibooks. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.