Semiconductors/Transistors as Switches

< Semiconductors
BJT NPN Transistor

A transistor is the most basic of digital devices. It has three terminals: the base, the collector, and the emitter. These terminals are connected to a piece of silicon that has been treated to have certain properties that allow it to behave as an amplifier, a switch, or other electronic devices.

Transistors as a Digital Device

At the most basic level, a transistor can be thought of as a switch, allowing current to flow if the base of the transistor is fed a reasonably high voltage compared to the emitter. This means that in a five volt system (+5v), voltages between 0v and 1v are considered 'low' and voltages between 4v and 5v are considered 'high'. Voltages between 1v and 4v are considered undefined and should not be applied to the input of a transistor acting as a logic device. Because transistors do not act like an ideal switch, they are arranged in ways that allow them to more closely emulate an ideal logic gate. More information on the different types of transistor families and associated logic will come later.

Transistor Anatomy

There are two main types of transistors: Bipolar Junction (BJT) and Metal-Oxide Semiconductor (MOS). These transistors are fabricated differently from slightly different materials, however they can be arranged to perform similar functions.

Inside a BJT

BJT Silicon

A Bipolar Junction Transistor is made up of a piece of silicon that has been treated to create a 'channel' in the silicon. First, an undoped (untreated) piece of silicon is selected. (Undoped silicon acts as an insulator, preventing the flow of current.) Next, a process is used to create an N-type channel in the silicon. This is silicon that has an overabundance of negative charge carriers (electrons). A second channel is created in the first, this time with P-type silicon. P-type silicon carries current because of the overabundance of positive charge carriers ('holes', they're called). The process has created three regions in the silicon, an N-type region, a P-type region, and another N-type region. The base terminal is connected to the P-type region, while the collector and emitter are connected to the opposing N-type regions.


Effectively, for the average transistor, when the base of the transistor rises above 0.7V (compared to the emitter), the impedance between the collector and the emitter begins to fall, until at about 1.2V it has virtually no resistance.


BJTs are current controlled devices. The following assumes that the BJT is NPN construction. It is possible to construct BJTs as PNP but these are normally slower and thus not popular. The base emitter junction is a diode. If the device is based on silicon (as opposed to germanium or 3-5 compoundes like galium/arsnides) then the forward volt drop of the diode is assumed to be 0.7V. In practice the transistor starts to change state at 0.65V and by 0.75V is fully saturated. This means that the electric current flowing from collector to emitter is near 0 whilst the base emitter voltage is below 0.65V (and hence there is no electric current flowing from base to emitter) then there is no current flow from collector to emitter. As the voltage from base to emitter is raised to 0.75 the current flow from base to emitter will increase by at least a factor of 100. This will increase the flow of current from collector to base by at least the same amount. By the time the base to emitter voltage is greater than 0.75V the current flowing from collector to emitter will typically be 100 times greater (this is amplification) and the collector to emitter voltage will have droped to 0.3V and cannot be further reduced hence the transistor will be said to be in saturation. Technically the transistor is saturated when the collector voltage is below the base voltage.

An example

Reference: "Transistor Manual" published in 1964 by General Electric Company

Page 44 has two graphs related to the NPN Transistor 2N1613, whose tabulated data are shown on page 548.

The VI graph shows that

This article is issued from Wikibooks. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.