9.0 Notes (page 2)

< Seed Factories

back to page 1

System Modeling

NOTE: General discussion of system modeling is being moved to section 4.2

Modeling Approach

The model consists of functions, and flows that connect the functions to each other and to external inputs and outputs. Each function outputs certain flows, and requires incoming flows to produce the outputs. By convention, the incoming required flows are divided into constraints, inputs, and mechanisms. Constraints control how the function will perform it's task. Inputs are transformed into outputs by the function. Mechanisms are the elements which perform the transformation, but are not themselves changed. As an example, to make a metal part, a computer drawing might be the constraint, a block of metal and electrical power would be the inputs, a computer-controlled 3-axis milling machine the mechanism, and the finished part and metal shavings the outputs.

Drawings - In drawing form, the convention is to show functions as boxes and flows as arrows, with constraints, inputs, and mechanisms coming in from the top, left, and bottom respectively, and outputs going out to the right. Flows can combine and split, as long as the totals before and after match. Drawings are helpful to visualize the interactions in the system, but by themselves do not provide a design solution.

Spreadsheets - In spreadsheet form, we adopt the convention that a function box and the flows entering and leaving it are listed together as rows. Where design alternatives exist, they are additional rows, with a percentage use factor applied. This can range from 0 to 100% for a given alternative, allowing varying mixes. Columns represent different types of resources making up a flow. In our previous example, kg of raw metal and kWh of electricity would be resources. Consumption of a resource gets a negative value, and supply of it is a positive value. Eventually all columns must add to zero, meaning every resource used needs a supply from somewhere. The model is then "balanced" in the accounting sense. We generally work backwards from desired outputs to find what the required inputs are, starting with the allocated requirements. Since the production function supplies outputs to all three functions, including itself, we will start by finding the resource needs of the habitation and transport functions first. This will help determine the required production outputs. By varying the formulas for alternative designs we help determine which are preferred.

A recent version of the spreadsheet developed in this study can be found in the Desktop Space Program on Sourceforge, because Wikibooks cannot store spreadsheet files. The generic template for such models is named Input-Output Model, and one adapted from that template for this study is named Temperate Location Model + a version date. The files are in Microsoft Excel 2010 format. The information to build the spreadsheet will be developed gradually, so it will be incomplete, even past the completion of this study. In a concept level study such as this, not every possibility can be considered, nor every numerical value determined exactly. Rather, the current version of the model represents the current state of knowledge of the design.

Time and Sequence - Building a location and adding production elements involves the time dimension, while a given spreadsheet tends to show the interactions at a particular time. To add the time dimension to the model, one approach is to use multiple sheets within a file, or multiple spreadsheet files to represent different times. This may prove unwieldy, and other software would be a better approach. The options include construction and manufacturing planning software, simulation and analysis software, or custom software. We leave that choice for later if it proves necessary.

Optimization and Selection - After sufficient details are included in the model, a process of optimizing and selecting among alternatives can start by manipulating values within the model. Our method is based on how well a given option meets the evaluation criteria over time. One that leads to a higher integrated score x time function or reaches the desired score faster is preferred. Since we cannot exactly predict the performance of technology that is not yet developed, there will be uncertainty in the resulting scoring. If choices overlap in score when uncertainty is included, we retain multiple options, and identify technology to develop further to reduce the uncertainty. Technologies can also be ranked by how much potential gain in scoring they offer, and thus which ones to work on first. Outside technology development will happen in parallel with a program such as this, and we do not know the results of our own development until it is done. Thus any choices made are subject to revision, and the system modeling process should continue or be updated at intervals.

Habitation Modeling

F.2.1.1.2 Provide Habitation Capacity - Here we will discuss general items for the Habitation function:

F.2.1.1.2.1 Protect from External Environment - This includes passive protection from weather, water and insects, and structural support of all the Habitation elements.

F2.1.1.2.2 Control Internal Environment - This includes control inputs and sensors (i.e. thermostats) and the active hardware to effect the desired changes (i.e. HVAC systems). Passive insulation is included under the previous function. Lighting and windows are part of the active systems to the extent they can be operable.

F.2.1.1.2.3 Provide Food and Drink - Includes the food itself, and provisions for local storage, preparation, serving, and disposal. A portion of the food may be grown in the habitation area (gardens or attached greenhouses), but the majority is expected to come from Production, or outside sources, which become inputs to this function. Potable water supply is part of this function. Food preparation waste and cleanup are outputs. Mechanisms can include standard kitchen equipment, and automated/central food systems.

F.2.1.1.2.4 Maintain Health - This function includes the basic tasks of sleep, sanitation, and exercise to maintain human health. We will place "Supply residents" as an input, meaning deliver the humans themselves, not supply them with goods, and a percentage of the humans as a labor output. We will ignore births, deaths, and household moves for this initial modeling, although obviously those will matter at some point.

F.2.1.1.2.5 Provide Personal Items - This includes personal living and storage space, and community space. The scale of living space then imposes an input for materials and energy to build and operate the space onto the Assemble Elements and Provide Power functions under Production, and completed Habitation elements as an output of Assemble Elements.

F.2.1.1.2.6 Provide Information - This includes educational, entertainment, and general information. We assume robust bandwidth, storage, and processing, which is shared across the location with other functions.

Transport Modeling

F.2.1.1.3 Provide Transport Capacity - The six sub-functions below exist because different methods might be used to carry out each. It is not required, however, to use different methods, they can be implemented by a shared hardware design if that proves more optimal.

F.2.1.1.3.1 Transport Bulk Cargo - For initial construction of the location, we make an estimate for the Habitation elements of 1 ton/m2 of floor area, based primarily of concrete and wood and other standard building materials, with an average delivery distance of 30 km. Therefore we need 200 tons/person x 75 people x 30 km = 450,000 ton-km. The Production elements are To Be Determined (TBD). Post-construction we will estimate 3% of initial construction per year for maintenance and modifications, so 13,500 ton-km. Bulk cargo does not need special protection during transport, equivalent to an open truck bed. The estimates will likely need to be revised when better data is available.

F.2.1.1.3.2 Transport Discrete Cargo - This includes individual items that need protection from the environment, transport shocks and vibration of delivery, or need special packaging. Discrete cargo is typically smaller size than bulk cargo, thus multiple items may be delivered at once. It includes items like furniture, electronics, hazardous chemicals, and food, which need some level of protection during delivery. For furniture and electronics we will estimate 200 kg/m2 initially + 3% per year. Food we estimate at 500 kg/person/year. Hazardous materials are TBD. Again, these will likely need to be revised.

For internal transport of both bulk and discrete cargo within a location we assume a mixture of mobile transport (vehicles) and fixed transport (pipes and conveyor systems). Overhead, underground, and rail systems should be considered to reduce land impact. Amount required is TBD.

F.2.1.1.3.3 Transport Humans - Because much of the work and supply of needs for the residents will be at the location, we will make a first guess that 50% of US average driver miles of 21,700 km (13,500 miles) will be required for all purposes. Requires passenger vehicles as a mechanism.

F.2.1.1.3.4 Transport Energy - This includes wired and wireless distribution of electricity, and portable sources like batteries and stored thermal energy.

F.2.1.1.3.5 Transport Fluids and Gases - These items require closed containers or fixed piping for delivery. It includes water, natural gas, and liquid fuels.

F.2.1.1.3.6 Transport Data - This includes all types of data in all forms, electronic and non-electronic. Legal rights and money are delivered via data so they are included here.

Production Modeling

Consideration of Habitation and Transport has given some idea of the required scale of Production, to which we now can add production needs for itself, and surplus output goals.

F.2.1.1.1 Provide Production Capacity -

F.2.1.1.1.1 Control Location - This provides control of all operational tasks at the location, including habitation and transport. It includes business functions like planning and analysis, real time control, displays, and data collection. It is implemented by a mix of human, automated, and software commands and actions.

F.2.1.1.1.2 Supply Power - This includes supplying electrical, thermal, hydraulic, and other forms of power for all parts of the location. Likely sources are photovoltaic, solar thermal, wind, and possibly organic. There is a goal of producing 10.5 times internal needs.

F.2.1.1.1.3 Extract Materials - This includes mining, water and air collection, and harvesting organic products from the temperate location, either from owned or leased land using internal equipment.

F.2.1.1.1.4 Process Materials - This includes the conversion of raw materials to finished material inventory. It is expected that a wide variety of chemical, mechanical, thermal, and other processes will be used. The volume is dictated by later production steps and the desire for surplus output.

F.2.1.1.1.5 Fabricate Parts - This includes transforming ready materials into finished parts by any of a number of processes. The particular processes and quantities will be determined from the needs of the other functions and for itself, plus for meeting surplus production and quality of life goals. This function will need further detailed breakdown. Inputs to fabrication come from outside supply, Process Materials, and Store Inventory. It includes consumable items like cutting bits and cutting fluids. Outputs go to Store Inventory or Assemble Elements for finished parts, and process materials or waste output for scrap and used fluids. In defining the manufactured mechanisms for fabrication, we need to select a starter set by flexibility and largest needs in volume and value, then sequentially add to it in expansion sets. Mechanisms for fabrication within each set can be divided into categories by type, including:

F.2.1.1.1.6 Store Inventory - This function provides storage for materials, parts, and completed items not currently in use, and additionally environment protection and control for other parts of production. The total amount of storage is determined by the needs for assembly, maintenance, and production plans, and any seasonal or batch needs. Storage can be divided into classes by environment needs, ranging from outdoors (no protection), sheltered (water protection only), enclosed, and conditioned (temperature/humidity). It can also be divided into classes by load/area, and items sizes. Items like chemicals will need special storage provisions for safety and physical compatibility. Since storage already needs to provide various levels of environment control and load capacity, we allocate the needs from the other production functions to get total land and building areas.

Inputs to storage will be from Extract Materials, Process Materials, Fabricate Parts, and Outside Supply. Outputs from Storage will be to Process Materials, Fabricate Parts, and Assemble Elements. Mechanisms will be human labor, remote controlled and automated elements, robotic elements, and static storage elements like buildings and shelving.

F.2.1.1.1.7 Assemble Elements - This includes assembly and construction leading to completed new elements or maintained existing elements. It accepts new parts and materials from internal production, plus those supplied from outside. It also accepts existing elements requiring maintenance or modification. Any needed dis-assembly is included here, since often that uses the same tools as assembly. Used parts are returned to parts fabrication if they can be reworked, to process material as scrap, or output as program waste. The mechanisms to perform the assembly function can include human labor, robots, automated processes, and specialized assembly equipment and tools. The scale of the assembly task includes:

F.2.1.1.1.8 Grow Organics - This includes growing microorganisms, plants, and animals to the point of harvest, after which it goes to process materials or storage. It includes traditional outdoor farming, greenhouses, and indoor facilities. Principal outputs are likely to be food for residents, wood for production, and possibly fuel. In addition will be an allocated part of surplus output.

For land requirements, we can assume 50% of calories from garden/greenhouse space, at 350 m2/person, and 50% of calories from field crops at 500 m2/person, thus a total of 425 m2/person, or 32,000 m2 total. For supplying a goal of 85% of resident food, we will assume meat and dairy are obtained from outside. Southern mixed forest productivity under good management is 1.5 kg/m2/yr = 1.5 mm thickness of green wood. We need 9 mm of wood/year for maintenance and modification of buildings, therefore we need 6 times the buildings area in forests. For the habitation part only this comes to 1200 x 75 = 90,000 m2 total, and is thus the dominant land area. We will not count any lumber cut from the habitation land itself, and consider that as surplus or bonus. A larger amount of wood is needed for initial construction, which we assume will come from well-stocked timber land which is thinned in the process of building on it, and maintained thereafter. If additional wood is required for initial construction, it is obtained from outside.

This article is issued from Wikibooks. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.