Physics Study Guide/Optics

< Physics Study Guide

Light

Light is that range of electromagnetic energy that is visible to the human eye, the visible colors. The optical radiation includes not only the visible range, but a broader range of invisible electromagnetic radiation that could be influenced in its radiation behavior in a similar way as the visible radiation, but needs often other transmitters or receivers for this radiation. Dependant on the kind of experimental question light - optical radiation behaves as a wave or a particle named lightwave or photon. The birth or death of photons needs electrons - electromagnetic charges, that change their energy.


The speed of light is fastest in the vacuum.

In a wave we have to distinguish between the speed of transport of energy or the speed of the transport of on phase state of a wave of a defined frequency. In vacuum the speed of waves of any photon energy - wavelength is the same, but the transmission speed through material is dependent on wavelength - photon energy. At the time the measurement of the speed of light in vacuum reached the uncertainty of the unit of length, the meter, this basic unit got in 1960 a new definition, based on the unit of time. Taking the best known measurement values it was defined without any uncertainties of length, that the speed of light is 299,792,458 meters per second. For this reason the only uncertainty in the speed of light is the uncertainty of the realization of the unit of time, the second. (If you like to get the standard of length, cooperate with the watchmaker).

However, when electromagnetic radiation enters a medium with refractive index, n, its speed would become


where is the speed of light in the medium.

Refraction

Refraction occurs when light travels from one medium into another (i.e. from air into water). Refraction is the changing of direction of light due to the changing speed of light. Refraction occurs toward the normal when light travels from a medium into a denser medium. Example when light travels from air into a block of glass, light is refracted towards the normal. The ratio between the sine of the angle of the incident ray and sine of the angle of the refracted ray is the same as the ratios of the indexes of refraction.

This is known as Snell's Law - an easy way to remember this is that 'Snell' is 'lens' backwards.

Mirrors and lenses

Focal length

Magnification

This article is issued from Wikibooks. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.