Yet Another Haskell Tutorial/Language advanced/Solutions

< Yet Another Haskell Tutorial < Language advanced
Haskell
Yet Another Haskell Tutorial
Preamble
Introduction
Getting Started
Language Basics (Solutions)
Type Basics (Solutions)
IO (Solutions)
Modules (Solutions)
Advanced Language (Solutions)
Advanced Types (Solutions)
Monads (Solutions)
Advanced IO
Recursion
Complexity

Partial Application

Function func3 cannot be converted into point-free style. The others look something like:

func1 x = map (*x)

func2 f g = filter f . map g

func4 = map (+2) . filter (`elem` [1..10]) . (5:)

func5 = flip foldr 0 . flip . curry 

You might have been tempted to try to write func2 as filter f . map, trying to eta-reduce off the g. In this case, this isn't possible. This is because the function composition operator (.) has type (b -> c) -> (a -> b) -> (a -> c). In this case, we're trying to use map as the second argument. But map takes two arguments, while (.) expects a function which takes only one.


The Final Word on Lists

We can start out with a recursive definition:

and [] = True
and (x:xs) = x && and xs

From here, we can clearly rewrite this as:

and = foldr (&&) True

We can write this recursively as:

concatMap f [] = []
concatMap f (x:xs) = f x ++ concatMap f xs

This hints that we can write this as:

concatMap f = foldr (\a b -> f a ++ b) []

Now, we can do point elimination to get:

     foldr (\a b -> f a ++ b) []
==>  foldr (\a b -> (++) (f a) b) []
==>  foldr (\a -> (++) (f a)) []
==>  foldr (\a -> ((++) . f) a) []
==>  foldr ((++) . f) []
This article is issued from Wikibooks. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.