General Chemistry/Overview of bonding
< General ChemistryIntroduction to Bonding
Put simply, chemical bonding join atoms together to form more complex structures (like molecules or crystals). Bonds can form between atoms of the same element, or between atoms of different elements. There are several types of chemical bonding which have different properties and give rise to different structures.
In many cases, atoms try to react to form valence shells containing eight electrons. The octet rule describes this, but it also has many exceptions
- Ionic bonding occurs between positive ions (cations) and negative ions (anions). In an ionic solid, the ions arrange themselves into a rigid crystal lattice. NaCl (common salt) is an example of an ionic substance. In ionic bonding there is an attractive force established between large numbers of positive cations and negative anions, such that a neutral lattice is formed. This attraction between oppositely-charged ions is collective in nature and called ionic bonding.
- Covalent bonds are formed when the orbitals of two non-metal atoms physically overlap and share electrons with each other. There are two types of structures to which this can give rise: molecules and covalent network solids. Methane (CH4) and water (H2O) are examples of covalently bonded molecules, and glass is a covalent network solid.
- Metallic bonding occur between atoms that have few electrons compared to the number of accessible orbitals. This is true for the vast majority of chemical elements. In a metallically bonded substance, the atoms' outer electrons are able to freely move around - they are delocalised to form an 'electron pool'. Iron is a metallically bonded substance.
Chemical bonding is one of the most crucial concepts in the study of chemistry. In fact, the properties of materials are basically defined by the type and number of atoms they contain and how they are bonded together.
So far, you have seen examples of intramolecular bonds. These bonds connect atoms into molecules or whole crystals. There are also intermolecular bonds that connect molecules into large substances. Sometimes, there is no difference between intramolecular and intermolecular bonds. In the case of ionic crystals (like salt) or covalent networks (like diamond), the same bonding forces connect all of the atoms together. In the case of metallic bonding, the atoms are all interconnected into one large piece of metal.
On the other hand, there may be intermolecular bonds different from those that join atoms into molecules. Intermolecular bonds hold individual molecules of water into a puddle, and they are broken when the water boils into a gas.