Fractals/fragmentarium

< Fractals
Screen shot of Fragmentarium

"Fragmentarium is an open source, cross-platform IDE by Mikael Hvidtfeldt Christensen [1] for exploring pixel based graphics on the GPU. It is inspired by Adobe's Pixel Bender, but uses GLSL, and is created specifically with fractals and generative systems in mind."

This in unofficial wiki about it.

Intro

How to do it on Ubuntu  :

get

Install :

sudo apt-get install build-essential libx11-dev mesa-common-dev libgl1-mesa-dev libglu1-mesa-dev libxext-dev libqt4-opengl-dev 

Get source :

git clone https://github.com/Syntopia/Fragmentarium

build

cd Fragmentarium
cd Fragmentarium-Source
cd "Build - Linux"
sh build.sh


or in the case of 3Dickulus version of Fragmentarium (v1.0.13) :

http://www.digilanti.org/fragmentarium/
1. unzip Fragmentarium-<vers>-3Dickulus.zip in ~/<your code projects>
2. cd ~/<your code projects>/Fragmentarium-<vers>-3Dickulus
3. execute the mklinux.sh script to build IlmBase OpenEXR and Fragmentarium
4. move the Fragmentarium folder with executable and support files to a suitable working location.
5. test everything!

There is also a mkmingw.bat file, same steps as above with mkmingw.bat instead of mklinux.sh at step 3, for windows (tested on 7/8). Requires Qt5 for windows installed with the MinGW package (standard from Qt website?). Both require CMake installed.

The sh and bat scripts call cmake to create the make files, compile and install. They will both install a working version in <your code projects>/Fragmentarium-<vers>-3Dickulus/Fragmentarium folder. For linux and mac the Qt libraries are installed at the system level so it should run at this point. On windows you will have to copy the Qt and mingw DLLs into the same folder as the executable or make adjustments to your setup so these are available at run time. As of this writing the required dlls are...

MinGW dlls

 icudt52.dll
 icuin52.dll
 icuuc52.dll
 libgcc_s_dw2-1.dll
 libstdc++-6.dll
 libwinpthread-1.dll

 Qt dlls

 Qt5Core.dll
 Qt5Gui.dll
 Qt5OpenGL.dll
 Qt5Script.dll
 Qt5Widgets.dll
 Qt5Xml.dll

QtCreator will also compile Fragmentarium but, for now, it does not compile OpenEXR, this will have to be done by executing the commands in the sh or bat script up to the point where OpenEXR static libs and development includes are installed in <your code projects>/Fragmentarium-<vers>-3Dickulus/OpenEXR.

run

Go to the ~/Fragmentarium/Fragmentarium-Source directory, then run Gui program :

cd ~/Fragmentarium/Fragmentarium-Source
./Fragmentarium-Source

Example output :


- OpenGL Vendor: NVIDIA Corporation
- OpenGL Version: 4.3.0 NVIDIA 319.32
- OpenGL Renderer: GeForce GTX 770/PCIe/SSE2
- OpenGL Shading Language Version: 4.30 NVIDIA via Cg compiler


Save

Image

You can render animations larger than viewport size. In the ToolBar set the Buffer Size to the tile size you want ie:64x36, then in the Menu/Render/High Resolution and Animation Render dialog set the multiplier (slider at the top) to "20" to produce images @ 1280x720. Using a small tile size will allow the GUI and desktop to remain responsive because the GPU will be doing a lot of small things instead of one big thing ;)

Features

Mouse


Left mousebutton: translate center.
Right mousebutton: zoom.
Wheel: zoom
A/D: left/right
W/S: up/down
Q/E: zoom in/out 

See help for more

Sliders

It is very usefull and not common feature :

 uniform float Zoom; slider[0,1,100] NotLockable


Examples

Progressive2D.frag

This is a utlity program for setting up anti-aliased 2D rendering. It is used by :


I have changed for Mandelbrot set :

These are default values from Fractint


uniform vec2 Center; slider[(-10,-10),(-0.75,0),(100,100)] NotLockable
uniform float Zoom; slider[0,0.66667,100] NotLockable

Julia set


Binary decomposition of interior

Binary decomposition of both interior and exterior
#include "2D.frag"
#group Julia set

// maximal number of iterations = quality of image
// but also ability to fall into circlae with radius ar
// around alfa fixed point
// if to big then all not escaping points are  unknown ( green)
uniform int iMax; slider[1,1000,10000]
// escape radius = er;  er2= er*er >= 4.0
uniform float er2; slider[4.0,100.0,1000.0]
// attrating radius (around fixed point alfa) = ar ;  ar2 = ar*ar
uniform float ar2; slider[0.000001,0.0001,0.003]
//
//uniform float m; slider[0.0,1.0,1000.0]

vec2 c = vec2(-1.0,0.0);  // parameter of quadratic polynomial  fc(z)= z^2 + c 
vec2 za = vec2(0.0,0.0); // alfa fixed point

// Zoom=0.85;


vec3 GiveColor( int type)
{
	switch (type)
	{
		case 0:  return vec3(1.0, 0.0, 0.0); break; //unknown
		case 1:  return vec3(0.0, 1.0, 0.0); break; // interior right
                case 2:  return vec3(0.0, 0.0, 1.0); break; // interior left
		case 3:  return vec3(1.0, 1.0, 1.0); break; // exterior
		default: 	return vec3(1.0, 0.0,0.0); 	break;}
}



// compute color of pixel = main function here
vec3 color(vec2 z0) {
	
	
	
	
	vec2 z=z0;
	int type=0; 
        // 0 =unknown; interior right =1; interior left = 2
        // exterior =3;
	int i=0; // number of iteration
	
	// iteration
	for ( i = 0; i < iMax; i++) {
		
		// escape test
		if (dot(z,z)> er2)               { type = 3; break;}// exterior
		// attraction test
		if (dot(z-za,z-za)< ar2)   
                {
                  if (z.x>za.x) { type = 1; break;}// interior right
                   else { type = 2; break;}// interior left
                }
     		z = vec2(z.x*z.x-z.y*z.y,2*z.x*z.y) +  c; // z= z^2+c
	}
	
	return GiveColor(type);
	
}// Write fragment code here...

Modified binary decomposition of interior

Modified binary decomposition of both interior and exterior
#include "2D.frag"
#group Julia set

// maximal number of iterations = quality of image
// but also ability to fall into circlae with radius ar
// around alfa fixed point
// if to big then all not escaping points are  unknown ( green)
uniform int iMax; slider[1,6,10000]
// escape radius = er;  er2= er*er >= 4.0
uniform float er2; slider[4.0,100.0,1000.0]
// attrating radius (around fixed point alfa) = ar ;  ar2 = ar*ar
uniform float ar2; slider[0.000001,0.0001,0.03]
//
//uniform float m; slider[0.0,1.0,1000.0]

vec2 c = vec2(-1.0,0.0);  // parameter of quadratic polynomial  fc(z)= z^2 + c   
vec2 za = vec2(0.0,0.0); // alfa fixed point
int iPeriod =2;

// Zoom=0.85;


vec3 GiveColor( int type)
{
	switch (type)
	{
		case 0:  return vec3(1.0, 0.0, 0.0); break; //unknown
		case 1:  return vec3(0.0, 1.0, 0.0); break; // interior up
                case 2:  return vec3(0.0, 0.0, 1.0); break; // interior down
		case 3:  return vec3(1.0, 1.0, 1.0); break; // exterior
		default: 	return vec3(1.0, 0.0,0.0); 	break;}
}



// compute color of pixel = main function here
vec3 color(vec2 z0) {
	
	
	
	
	vec2 z=z0;
	int type=0; 
        // 0 =unknown; interior right =1; interior left = 2
        // exterior =3;
	int i=0; // number of iteration
    int p;
	
	// iteration
	for ( i = 0; i < 100; i++) {
		
		// escape test
		if (dot(z,z)> er2)               { type = 3; return GiveColor(type);}// exterior
		if (dot(z-za,z-za)< ar2)   break; // interior  , non-escaping
     		 z = vec2(z.x*z.x-z.y*z.y,2*z.x*z.y) +  c; // z= z^2+c

	}

    // non-escaping points 
		z=z0;
           for ( i = 0; i < iMax; i++)  z = vec2(z.x*z.x-z.y*z.y,2*z.x*z.y) +  c; // z= z^2+c
               // {
                  if (z.y>za.y) { type = 1;}// interior up
                   else { type = 2; }// interior down
                // }
	
	return GiveColor(type);
	
}

Components

#include "2D.frag"
#group Julia set

// maximal number of iterations = quality of image
// but also ability to fall into circlae with radius ar
// around alfa fixed point
// if to big then all not escaping points are  unknown ( green)
uniform int iMax; slider[1,1000,10000]
// escape radius = er;  er2= er*er >= 4.0
uniform float er2; slider[4.0,100.0,1000.0]
// attrating radius (around fixed point alfa) = ar ;  ar2 = ar*ar
uniform float ar2; slider[0.000001,0.0001,0.003]
//
//uniform float m; slider[0.0,1.0,1000.0]

vec2 c = vec2(-0.75,0.0);  // parameter of quadratic polynomial  fc(z)= z^2 + c 
vec2 za = vec2(-0.5,0.0); // alfa fixed point




vec3 GiveColor( int type)
{
	switch (type)
	{
		case 0:  return vec3(1.0, 0.0, 0.0); break; //unknown
		case 1:  return vec3(0.0, 1.0, 0.0); break; // interior right
                case 2:  return vec3(0.0, 0.0, 1.0); break; // interior left
		case 3:  return vec3(1.0, 1.0, 1.0); break; // exterior
		default: 	return vec3(1.0, 0.0,0.0); 	break;}
}



// compute color of pixel = main function here
vec3 color(vec2 z0) {
	
	
	
	
	vec2 z=z0;
	int type=0; 
        // 0 =unknown; interior right =1; interior left = 2
        // exterior =3;
	int i=0; // number of iteration
	
	// iteration
	for ( i = 0; i < iMax; i++) {
		
		// escape test
		if (dot(z,z)> er2)               { type = 3; break;}// exterior
		// attraction test
		if ((dot(z-za,z-za)< ar2)  && (i % 2) )  
                {
                  if (z.x>za.x) { type = 1; break;}// interior right
                   else { type = 2; break;}// interior right
                }
     		z = vec2(z.x*z.x-z.y*z.y,2*z.x*z.y) +  c; // z= z^2+c
	}
	
	return GiveColor(type);
	
}

Checkerboard

A parabolic Julia set with ternary decomposition of interior (parabolic checkerboard for rotation number 1 over 2 )

Image of checkerboard ( made with c )
#include "2D.frag"
#group Julia set

// maximal number of iterations = quality of image
// but also ability to fall into circle with radius ar
// around alfa fixed point
// if to big then all not escaping points are  unknown ( red)
uniform int iMax; slider[1,1000,10000]
// escape radius = er;  er2= er*er >= 4.0
uniform float er2; slider[4.0,100.0,1000.0]
// attrating radius (around fixed point alfa) = ar ;  ar2 = ar*ar
uniform float ar2; slider[0.000001,0.0007,0.0007]
//


vec2 c = vec2(-0.75,0.0);  // initial value of c
vec2 za = vec2(-0.5,0.0); // alfa fixed point




vec3 GiveColor( int type)
{
	switch (type)
	{
		case 0:  return vec3(1.0, 0.0, 0.0); break; //unknown = red
		case 10:  return vec3(0.0, 1.0, 0.0); break; // interior right up = green 
           case 11:  return vec3(0.0, 0.5, 0.0); break; // interior right down = dark green
		case 20:  return vec3(0.0, 0.0, 1.0); break; // interior left up = blue
            case 21:  return vec3(0.0, 0.0, 0.6); break; // interior left  down = dark blue
		case 3:  return vec3(1.0, 1.0, 1.0); break; // exterior = white 
		default: 	return vec3(1.0, 0.0,0.0); 	break;}
}



// compute color of pixel = main function here
vec3 color(vec2 z0) {
	
	
	
	
	vec2 z=z0;
	int type=0;
	// 0 =unknown; interior right =1; interior left = 2
	// exterior =3;
	int i=0; // number of iteration
	
	// iteration
	for ( i = 0; i < iMax; i++) {
		
		// escape test
		if (dot(z,z)> er2)               { type = 3; break;}// exterior
		// attraction test
		if ((dot(z-za,z-za)< ar2)  && (i % 2) )
		{         if (z.x>za.x) {type = 10;} //  interior left
                               else type=20; // interior right
			     if (z.y>za.y) type += 1; // up or down 
                      break;
		}
		
		z = vec2(z.x*z.x-z.y*z.y,2*z.x*z.y) +  c; // z= z^2+c
	}
	
	return GiveColor(type);
	
}

Mandelbrot set

LSM

// https://syntopia.github.io/Fragmentarium/usage.html
#include "2D.frag"
#group Simple Mandelbrot


// Creates a sliders.  The values in the brackets are minimum, default, and maximum values.

// maximal number of iterations
uniform int iMax; slider[1,10,1000]
// er2= er^2 wher er= escape radius = bailout
uniform float er2; slider[4.0,4.0,1000]   

// compute color of pixel
 vec3 color(vec2 c) {
   vec2 z = vec2(0.0);  // initial value

 // iteration
  for (int i = 0; i < iMax; i++) {
    z = vec2(z.x*z.x-z.y*z.y, 2*z.x*z.y) +  c; // z= z^2+c
    if (dot(z,z)> er2)   // escape test 
      return vec3(1.0- float(i)/float(iMax)); // exterior
    
  }
  return vec3(0.0); //interior
}

Binary decomposition

Binary decomposition using IterationMax=2000 and EscapeRadius=1000

algorithm = binary decomposition of target set ( and it's preimages = level sets )

#include "2D.frag"
#group Simple Mandelbrot

// maximal number of iterations
uniform int iMax; slider[1,100,1000] 
uniform float er2; slider[4.0,1000.0,10000.0] 

// compute color of pixel
 vec3 color(vec2 c) {
   vec2 z = vec2(0.0);  // initial value

 // iteration
  for (int i = 0; i < iMax; i++) {
    z = vec2(z.x*z.x-z.y*z.y,2*z.x*z.y) +  c; // z= z^2+c
    if (dot(z,z)> er2)   // escape test 
      // exterior
      if (z.x>0){ return vec3( 1.0);} // upper part of the target set 
      else return vec3(0.0); //lower part of the target set 
  }
  return vec3(0.0); //interior
}

Doc

References

  1. Mikael Hvidtfeldt Christensen
  2. Fragmentarium home page
  3. github page
  4. blog
  5. Fragmentarium official FAQ
  6. Fractal Forums page
  7. programming page
  8. FF gallery
  9. flicker group
  10. deviantart search
  11. Fragmentarium deviantart group
This article is issued from Wikibooks. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.