Fractals/Rational
< Fractals
Herman ring - image with c++ src code
Iteration of complex rational functions[1][2][3]
Examples
- commons:Category:Complex rational maps
- f(z)=z2/(z9-z+0,025) [4]
- f(z)=(z3-z)/(dz2+1) where d=-0,003+0,995i [5]
- f(z)=(z3-z)/(dz2+1) where d=1,001· e2Pi/30 [6]
- Multibrot sets by Xender[7]
- [8]
- Rational functions
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
degree 6
%3Dz%5E2(3_%E2%88%92_z%5E4_)_over_2.png)
Julia set of rational function f(z)=z^2(3 − z^4 ) over 2.png
The Julia set of the degree 6 function f :[9]
There are 3 superattracting fixed points at :
- z = 0
- z = 1
- z = ∞
All other critical points are in the backward orbit of 1.
How to compute iteration :
z:x+y*%i; z1:z^2*(3-z^4)/2; realpart(z1); ((x^2−y^2)*(−y^4+6*x^2*y^2−x^4+3)−2*x*y*(4*x*y^3−4*x^3*y))/2 imagpart(z1); (2*x*y*(−y^4+6*x^2*y^2−x^4+3)+(x^2−y^2)*(4*x*y^3−4*x^3*y))/2
Find fixed points using Maxima CAS :
z1:z^2*(3-z^4)/2; s:solve(z1=z); s:float(s);
result :
[z=−1.446857247913871,z=.7412709105660023,z=−1.357611535209976*%i−.1472068313260655,z=1.357611535209976*%i−.1472068313260655,z=1.0,z=0.0]
check multiplicities of the roots :
multiplicities; [1,1,1,1,1,1]
z1:z^2*(3-z^4)/2; s:solve(z1=z)$ s:map(rhs,s)$ f:z1; k:diff(f,z,1); define(d(z),k); m:map(d,s)$ m:map(abs,m)$ s:float(s); m:float(m);
Result : there are 6 fixed point 2 of them are supperattracting ( m=0 ), rest are repelling ( m>1 ):
[−1.446857247913871,.7412709105660023,−1.357611535209976*%i−.1472068313260655,1.357611535209976*%i−.1472068313260655,1.0,0.0] [14.68114348748323,1.552374536603988,10.66447061028112,10.66447061028112,0.0,0.0]
Critical points :
[%i,−1.0,−1.0*%i,1.0,0.0]
References
- ↑ Julia Sets of Complex. Polynomials and Their. Implementation on the Computer. by CM Stroh
- ↑ Julia sets by Michael Becker.
- ↑ DYNAMICS AND BIFURCATIONS OF A FAMILY OF RATIONAL MAPS WITH PARABOLIC FIXED POINTS by R. HAGIHARA AND J. HAWKINS
- ↑ f(z)=z2/(z9-z+0,025) by Esmeralda Rupp-Spangle
- ↑ f(z)=(z3-z)/(dz2+1) where d=-0,003+0,995i by Esmeralda Rupp-Spangle
- ↑ f(z)=(z3-z)/(dz2+1) where d=1,001· e2Pi/30 by Esmeralda Rupp-Spangle
- ↑ Rhapsody in Numbers by Xender
- ↑ Julia Sets for Rational Maps by PAUL BLANCHARD , CUZZOCREO, ROBERT L. DEVANEY, DANIEL M. LOOK, ELIZABETH D. RUSSELL
- ↑ ON THURSTON’S PULLBACK MAP by XAVIER BUFF, ADAM EPSTEIN, SARAH KOCH, AND KEVIN PILGRIM
This article is issued from Wikibooks. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.