Fractals/Iterations in the complex plane/parabolic

< Fractals < Iterations in the complex plane

"Most programs for computing Julia sets work well when the underlying dynamics is hyperbolic but experience an exponential slowdown in the parabolic case." ( Mark Braverman )[1]

In other words it means that one can need days for making a good picture of parabolic Julia set with standard / naive algorithms.

There are 2 problems here :

Planes

Dynamic plane

Discrete dynamic in case of complex quadratic polynomial. exterior = white, interior = gray, unknown=red;
How image is changing with various Iteration Max

Dynamic plane = complex z-plane  :


See also :

Key words

Ecalle cilinder

Ecalle cylinders[13] or Ecalle-Voronin cylinders ( by Jean Ecalle[14] [15])

"... the quotient of a petal P under the equivalence relation identifying z and f (z) if both z and f (z) belong to P. This quotient manifold is called the Ecalle cilinder, and it is conformally isomorphic to the infinite cylinder C/Z"[16]

eggbeater dynamics

Hand Egg beater
Here is real model of what happens in parabolic case
It is a dynamic plane for fc(z)=z^2 + 1/4. It is zoom around parabolic fixed point z=0.5. Orbits of some points inside Julia set are shown (white points)
Contunuus model of dynamics inside a 2 petals flower - dipol
Model of dynamics inside a 4 petals flower - quadrupole

Physical model : the behaviour of cake when one uses eggbeater.

The mathematical model : a 2D vector field with 2 centers ( second-order degenerate points ) [17][18]


The field is spinning about the centers, but does not appear to be diverging.

parabolic germ

Germ : [19][20][21]

germ of vector field

The horn map

" the horn map h = Φ ◦ Ψ, where Φ is a shorthand for Φattr and Ψ for Ψrep (extended Fatou coordinate and parameterizations)." [23]

Petal

repelling petals around fixed point and its preimages

"The petals ... are interesting not only because they give a rather good intuitive idea of the dynamics that arise near a parabolic point, but also because that the dynamic of f0 on a petal can be linearized, i.e., it is conjugated to the shift map T of C defined by T(w) := w + 1." ( Laurea Triennale [24] )


There is no unified definition of petals.

Petal of a flower can be :

Each petal is invariant under f^period. In other words it is mapped to itself by f^period.


Attracting petal P is a :

Petals are symmetric with respect to the d-1 directions :

where :

Petals can have different size.

If then Julia set should approach parabolic periodic point in n directions, between n petals. [27]


" Using the language of holomorphic dynamics, people would say that you are studying the dynamics of a polynomial near the parabolic fixed point . By a simple linear change of variables, the study of any such parabolic fixed point can be reduced to the study of . Then you can apply another change . Thus you are reduced to the study of . If the real part $Re(w)$ is large enough you will obtain . This will give you what you want (when going back to the z-variable).

The domain (for large ) looks like some kind of cardioid (in your particular case) when you visualize it in the z-variable (it's poetically called an attracting petal). " Sylvain Bonnot [28]

0/1

How the target set is changing along an internal ray 0

Cpp code by Wolf Jung see function parabolic from file mndlbrot.cpp ( program mandel ) [29][30]

To see effect :

C code :

  // in function uint mndlbrot::esctime(double x, double y)
  if (b == 0.0 && !drawmode && sign < 0
      && (a == 0.25 || a == -0.75)) return parabolic(x, y);
 // uint mndlbrot::parabolic(double x, double y)
 if (Zx>=0 && Zx <= 0.5 && (Zy > 0 ? Zy : -Zy)<= 0.5 - Zx) 
            { if (Zy>0) data[i]=200; // show petal
                     else data[i]=150;}

Gnuplot code :

reset
f(x,y)=  x>=0 && x<=0.5 &&  (y > 0 ? y : -y) <= 0.5 - x
unset colorbox
set isosample 300, 300
set xlabel 'x'
set ylabel 'y'
set sample 300
set pm3d map
splot [-2:2] [-2:2] f(x,y)

1/2

Cpp code by Wolf Jung see function parabolic from file mndlbrot.cpp ( program mandel ) [31] To see effect :

C code :

  // in function uint mndlbrot::esctime(double x, double y)
  if (b == 0.0 && !drawmode && sign < 0
      && (a == 0.25 || a == -0.75)) return parabolic(x, y);
 // uint mndlbrot::parabolic(double x, double y)
  if (A < 0 && x >= -0.5 && x <= 0 && (y > 0 ? y : -y) <= 0.3 + 0.6*x)
      {  if (j & 1) return (y > 0 ? 65282u : 65290u);
         else return (y > 0 ? 65281u : 65289u);
      }


1/3

Method by Scott Sutherland:

Number of petals

In parabolic point child period coincides with parent period

For quadratic polynomials :


Multiplicity = ParentPeriod + ChildPeriod

NumberOfPetals = multiplicity - ParentPeriod

It is because in parabolic case fixed point coincidence with periodic cycle. Length of cycle ( child period) is equal to number of petals


For other polynomial maps :

f(z) number of petals explanation
d-1 for point z=0 has multiplicity d
d+2 (?)for a root z=0 has multiplicity d+3

For f(z)= -z+z^(p+1) parabolic flower has :

... ( to do )

Sepal

Sepals and petals
Parabolic sepals for internal angle 1 over 1

Definitions:

Flower

Sum of all petals creates a flower with center at parabolic periodic point.[34]

"... an attracting petal is a set of points in a sufficient small disk around the periodic point whose forward orbits always remain in the disk under powers of return map. " ( W P Thurston : On the geometry and dynamics of Iterated rational maps)

Cauliflower

Cauliflower or broccoli :[35]


Pleae note that :

Bifurcation of the Cauliflower

How Julia set changes along real axis ( going from c=0 thru c=1/4 and futher ) :


Perturbation of a function by complex  :

When one add epsilon > 0 ( move along real axis toward + infinity ) there is a bifurcation of parabolic fixed point :

"If we slightly perturb with epsilon<0 then the parabolic fixed point splits up into two real fixed points on the real axis (one attracting, one repelling). "


See :

parabolic implosion

Video on YouTube[36]

Vector field

singularity

singularity types :


" A curvilinear sector is defined as the region bounded by a circle C with arbitrary small radius and two streamlines S and S! both converging towards singularity. One then considers the streamlines passing through the open sector g in order to distinguish between three possible types of curvilinear sectors."

Local dynamics

Local dynamics :

Near parabolic fixed point

Orbits near parabolic fixed point and inside Julia set

Why analyze f^p not f ?

Forward orbit of f near parabolic fixed point is composite. It consist of 2 motions :

How to compute parabolic c values

Description

Parabolic points of period 1 component of Mandelbrot set (parameter plane)
n Internal angle (rotation number) t = 1/n The root point c = parabolic parameter Two external angles of parameter rays landing on the root point c (1/(2^n+1); 2/(2^n+1) fixed point external angles of dynamic rays landing on fixed point
1 1/1 0.25 (0/1 ; 1/1) 0.5 (0/1 = 1/1)
2 1/2 -0.75 (1/3; 2/3) -0.5 (1/3; 2/3)
3 1/3 0.64951905283833*%i-0.125 (1/7; 2/7) 0.43301270189222*%i-0.25 (1/7; 2/7; 3/7)
4 1/4 0.5*%i+0.25(1/15; 2/15) 0.5*%i(1/15; 2/15; 4/15; 8/15)
5 1/5 0.32858194507446*%i+0.35676274578121 (1/31; 2/31) 0.47552825814758*%i+0.15450849718747(1/31; 2/31; 4/31; 8/31; 16/31)
6 1/6 0.21650635094611*%i+0.375 (1/63; 2/63)0.43301270189222*%i+0.25(1/63; 2/63; 4/63; 8/63; 16/63; 32/63)
7 1/7 0.14718376318856*%i+0.36737513441845(1/127; 2/127) 0.39091574123401*%i+0.31174490092937(1/127; 2/127, 4/127; 8/127; 16/127; 32/127, 64/127)
8 1/8 0.10355339059327*%i+0.35355339059327 0.35355339059327*%i+0.35355339059327
9 1/9 0.075191866590218*%i+0.33961017714276 0.32139380484327*%i+0.38302222155949
10 1/10 0.056128497072448*%i+0.32725424859374 0.29389262614624*%i+0.40450849718747

For internal angle n/p parabolic period p cycle consist of one z-point with multiplicity p[39] and multiplier = 1.0 . This point z is equal to fixed point


Period 1

One can easily compute boundary point c

of period 1 hyperbolic component ( main cardioid) for given internal angle ( rotation number) t using this cpp code by Wolf Jung[40]

t *= (2*PI); // from turns to radians
cx = 0.5*cos(t) - 0.25*cos(2*t); 
cy = 0.5*sin(t) - 0.25*sin(2*t); 

or this Maxima CAS code :

 
/* conformal map  from circle to cardioid ( boundary
 of period 1 component of Mandelbrot set */
F(w):=w/2-w*w/4;

/* 
circle D={w:abs(w)=1 } where w=l(t,r) 
t is angle in turns ; 1 turn = 360 degree = 2*Pi radians 
r is a radius 
*/
ToCircle(t,r):=r*%e^(%i*t*2*%pi);

GiveC(angle,radius):=
(
 [w],
 /* point of  unit circle   w:l(internalAngle,internalRadius); */
 w:ToCircle(angle,radius),  /* point of circle */
 float(rectform(F(w)))    /* point on boundary of period 1 component of Mandelbrot set */
)$

compile(all)$

/* ---------- global constants & var ---------------------------*/
Numerator :1;
DenominatorMax :10;
InternalRadius:1;

/* --------- main -------------- */
for Denominator:1 thru DenominatorMax step 1 do
(
 InternalAngle: Numerator/Denominator,
 c: GiveC(InternalAngle,InternalRadius),
 display(Denominator),
 display(c),
  /* compute fixed point */
 alfa:float(rectform((1-sqrt(1-4*c))/2)), /* alfa fixed point */
 display(alfa)
 )$


Period 2

// cpp code by W Jung http://www.mndynamics.com

t *= (2*PI);  // from turns to radians
cx = 0.25*cos(t) - 1.0;
cy = 0.25*sin(t);  


Periods 1-6

/* 


batch file for Maxima CAS 
computing bifurcation points for period 1-6

 Formulae for cycles in the Mandelbrot set II
Stephenson, John; Ridgway, Douglas T.
Physica A, Volume 190, Issue 1-2, p. 104-116.
*/

kill(all);
remvalue(all);


start:elapsed_run_time ();

/* ------------ functions ----------------------*/

/* exponential for of complex number with angle in turns */
 /* "exponential form prevents allroots from working", code by Robert P. Munafo */ 

GivePoint(Radius,t):=rectform(ev(Radius*%e^(%i*t*2*%pi), numer))$ /* gives point of unit circle for angle t in turns */

GiveCirclePoint(t):=rectform(ev(%e^(%i*t*2*%pi), numer))$ /* gives point of unit circle for angle t in turns Radius = 1 */

/* gives a list of iMax points of unit circle */
GiveCirclePoints(iMax):=block(
 [circle_angles,CirclePoints],
 CirclePoints:[],
 circle_angles:makelist(i/iMax,i,0,iMax),
 for t in circle_angles do CirclePoints:cons(GivePoint(1,t),CirclePoints),
 return(CirclePoints) /* multipliers */
)$

/* http://commons.wikimedia.org/wiki/File:Mandelbrot_set_Components.jpg 
Boundary equation  b_n(c,P)=0 
    defines relations between hyperbolic components and unit circle for given period n ,
    allows computation of exact coordinates of hyperbolic componenets.

b_n(w,c), is boundary polynomial ( implicit function of 2 variables ).

*/

GiveBoundaryEq(P,n):=
block(
 if n=1 then return(c + P^2 - P),
 if n=2 then return(- c + P - 1),
 if n=3 then return(c^3 + 2*c^2 - (P-1)*c + (P-1)^2),
 if n=4 then return( c^6 + 3*c^5 + (P+3)* c^4 + (P+3)* c^3  - (P+2)*(P-1)*c^2 - (P-1)^3),
 if n=5 then return(c^15 + 8*c^14 + 28*c^13 + (P + 60)*c^12 + (7*P + 94)*c^11 + 
  (3*P^2 + 20*P + 116)*c^10 + (11*P^2 + 33*P + 114)*c^9 + (6*P^2 + 40*P + 94)*c^8 + 
  (2*P^3 - 20*P^2 + 37*P + 69)*c^7 + (3*P - 11)*(3*P^2 - 3*P - 4)*c^6 + (P - 1)*(3*P^3 + 20*P^2 - 33*P - 26)*c^5 +
  (3*P^2 + 27*P + 14)*(P - 1)^2*c^4 - (6*P + 5)*(P - 1)^3*c^3 + (P + 2)*(P - 1)^4*c^2 - c*(P - 1)^5  + (P - 1)^6),
if n=6 then return( c^27+
13*c^26+
78*c^25+
(293 - P)*c^24+
(792 - 10*P)*c^23+
(1672 - 41*P)*c^22+
(2892 - 84*P - 4*P^2)*c^21+
(4219 - 60*P - 30*P^2)*c^20+
(5313 + 155*P - 80*P^2)*c^19+
(5892 + 642*P - 57*P^2 + 4*P^3)*c^18+
(5843 + 1347*P + 195*P^2 + 22*P^3)*c^17+
(5258 + 2036*P + 734*P^2 + 22*P^3)*c^16+
(4346 + 2455*P + 1441*P^2 - 112*P^3 + 6*P^4)*c^15 + 
(3310 + 2522*P + 1941*P^2 - 441*P^3 + 20*P^4)*c^14 + 
(2331 + 2272*P + 1881*P^2 - 853*P^3 - 15*P^4)*c^13 + 
(1525 + 1842*P + 1344*P^2 - 1157*P^3 - 124*P^4 - 6*P^5)*c^12 + 
(927 + 1385*P + 570*P^2 - 1143*P^3 - 189*P^4 - 14*P^5)*c^11 + 
(536 + 923*P - 126*P^2 - 774*P^3 - 186*P^4 + 11*P^5)*c^10 + 
(298 + 834*P + 367*P^2 + 45*P^3 - 4*P^4 + 4*P^5)*(1-P)*c^9 + 
(155 + 445*P - 148*P^2 - 109*P^3 + 103*P^4 + 2*P^5)*(1-P)*c^8 + 
2*(38 + 142*P - 37*P^2 - 62*P^3 + 17*P^4)*(1-P)^2*c^7 + 
(35 + 166*P + 18*P^2 - 75*P^3 - 4*P^4)*((1-P)^3)*c^6 + 
(17 + 94*P + 62*P^2 + 2*P^3)*((1-P)^4)*c^5 + 
(7 + 34*P + 8*P^2)*((1-P)^5)*c^4 + 
(3 + 10*P + P^2)*((1-P)^6)*c^3 + 
(1 + P)*((1-P)^7)*c^2 +
-c*((1-P)^8) + (1-P)^9)
)$


/* gives a list of points c on boundaries on all components for give period */
GiveBoundaryPoints(period,Circle_Points):=block(
 [Boundary,P,eq,roots],
  Boundary:[],
 for m in Circle_Points do (/* map from reference plane to parameter plane */
  P:m/2^period,
  eq:GiveBoundaryEq(P,period), /* Boundary equation  b_n(c,P)=0  */
  roots:bfallroots(%i*eq),
  roots:map(rhs,roots),
  for root in roots do Boundary:cons(root,Boundary)),
  return(Boundary)
)$


/* divide llist of roots to 3 sublists = 3  components */
/* ---- boundaries of period 3 components 
period:3$
Boundary3Left:[]$
Boundary3Up:[]$
Boundary3Down:[]$

Radius:1;

 for m in CirclePoints do (
  P:m/2^period,
  eq:GiveBoundaryEq(P,period),
  roots:bfallroots(%i*eq),
  roots:map(rhs,roots),
  for root in roots do 
     (
       if realpart(root)<-1  then Boundary3Left:cons(root,Boundary3Left),
       if (realpart(root)>-1 and imagpart(root)>0.5) 
            then Boundary3Up:cons(root,Boundary3Up),
       if (realpart(root)>-1 and imagpart(root)<0.5) 
            then Boundary3Down:cons(root,Boundary3Down)
               
     )

)$
--------- */


/* gives a list of parabolic points for given : period and internal angle */
GiveParabolicPoints(period,t):=block
(
 [m,ParabolicPoints,P,eq,roots],
 m: GiveCirclePoint(t), /* root of unit circle, Radius=1, angle t=0 */
 ParabolicPoints:[],
 /* map from reference plane to parameter plane */
 P:m/2^period,
 eq:GiveBoundaryEq(P,period), /* Boundary equation  b_n(c,P)=0  */
 roots:bfallroots(%i*eq),
 roots:map(rhs,roots),
 for root in roots do ParabolicPoints:cons(float(root),ParabolicPoints),
 return(ParabolicPoints) 

)$


compile(all)$



/* ------------- constant values ----------------------*/

fpprec:16; 





/* ------------unit circle on a w-plane -----------------------------------------*/
a:GiveParabolicPoints(6,1/3);
a$



How to draw parabolic Julia set

All points of interior of filled Julia set tend to one periodic orbit ( or fixed point ). This point is in Julia set and is weakly attracting. [41] One can analyse only behevior near parabolic fixed point. It can be done using critical orbits.

There are two cases here : easy and hard.

If the Julia set near parabolic fixed point is like n-th arm star ( not twisted) then one can simply check argument of of zn, relative to the fixed point. See for example z+z^5. This is an easy case.

In the hard case Julia set is twisted around fixed.


Estimation from exterior

Escape time

Description

Long iteration method

Long iteration method [42]

Dynamic rays

Parabolic Julia set for internal angle 1 over 15 - made with use of external rays as a aproximation of Julia set near alfa fixed point

One can use periodic dynamic rays landing on parabolic fixed point to find narrow parts of exterior.

Let's check how many backward iterations needs point on periodic ray with external radius = 4 to reach distance 0.003 from parabolic fixed point :

period Inverse iterations time
1 340 0m0.021s
2 55 573 0m5.517s
3 8 084 815 13m13.800s
4 1 059 839 105 1724m28.990s

One can use only argument of point z of external rays and its distance to alfa fixed point. ( see code from image) It works for periods up to 15 ( maybe more ... )

Estimation from interior

Julia set is a boundary of filled-in Julia set Kc.

If components of interior are lying very close to each other then find components using :[43]

color = LastIteration % period

For parabolic components between parent and child component :[44]

periodOfChild = denominator*periodOfParent  
color = iLastIteration % periodOfChild 

where denominator is a denominator of internal angle of parent comonent of Mandelbrot set.

Angle

"if the iterate zn of tends to a fixed parabolic point, then the initial seed z0 is classified according to the argument of zn−z0, the classification being provided by the flower theorem " ( Mark McClure [45])

Attraction time

Various types of dynamics

Interior of filled Julia set consist of components. All comonents are preperiodic, some of them are periodic ( immediate basin of attraction).

In other words :

It is possible to use it to color components. Because in parabolic case attractor is weak ( weakly attracting) it needs a lot of iterations for some points to reach it.


 // i = number of iteration
 // iPeriodChild = period of child component of Mandelbrot set ( parabolic c value is a root point between parant and child component
 /* distance from z to Alpha  */
 Zxt=Zx-dAlfaX;
 Zyt=Zy-dAlfaY;
 d2=Zxt*Zxt +Zyt*Zyt;
 // interior : check if fall into internal target set ( circle around alfa fixed point )  
 if (d2<dMaxDistance2Alfa2) return  iColorsOfInterior[i % iPeriodChild];

Here are some example values :

 iWidth  = 1001 // width of image in pixels
 PixelWidth  = 0.003996  
 AR  = 0.003996 // Radius around attractor
 denominator  = 1 ; Cx  = 0.250000000000000; Cy  = 0.000000000000000 ax  = 0.500000000000000; ay  = 0.000000000000000   
 denominator  = 2 ; Cx  = -0.750000000000000; Cy  = 0.000000000000000 ax  = -0.500000000000000; ay  = 0.000000000000000   
 denominator  = 3 ; Cx  = -0.125000000000000; Cy  = 0.649519052838329 ax  = -0.250000000000000; ay  = 0.433012701892219  
 denominator  = 4 ; Cx  = 0.250000000000000; Cy  = 0.500000000000000 ax  = 0.000000000000000; ay  = 0.500000000000000   
 denominator  = 5 ; Cx  = 0.356762745781211; Cy  = 0.328581945074458 ax  = 0.154508497187474; ay  = 0.475528258147577   
 denominator  = 6 ; Cx  = 0.375000000000000; Cy  = 0.216506350946110 ax  = 0.250000000000000; ay  = 0.433012701892219    
 
 denominator  = 1 ;   i =               243.000000 
 denominator  = 2 ;   i =            31 171.000000 
 denominator  = 3 ;   i =         3 400 099.000000 
 denominator  = 4 ;   i =       333 293 206.000000 
 denominator  = 5 ;   i =    29 519 565 177.000000 
 denominator  = 6 ;   i = 2 384 557 783 634.000000 

where :

C = Cx + Cy*i 
a = ax + ay*i // fixed point alpha
i // number of iterations after which critical point z=0.0 reaches disc around fixed point alpha with radius AR
denominator of internal angle ( in turns )
internal angle =  1/denominator

Note that attraction time i is proportional to denominator.

Attraction time for various denominators

Now you see what means weakly attracting.

One can :

Interior distance estimation


Trap

Trap = target set

Estimation from interior and exterior

Julia set is a common boundary of filled-in Julia set and basin of attraction of infinity.

It works for denominator up to 4.

Inverse iteration of repelling points

Inverse iteration of alfa fixed point. It works good only for cuting point ( where external rays land). Other points still are not hitten.


Bof61

Gallery



For other polynomial maps see here

See also

References

  1. Mark Braverman : On efficient computation of parabolic Julia sets
  2. Note on dynamically stable perturbations of parabolics by Tomoki Kawahira
  3. Filled Julia set in wikipedia
  4. Augustin Fruchard, Reinhard Sch¨afke. Composite Asymptotic Expansions and Difference Equations. Revue Africaine de la Recherche en Informatique et Math´ematiques Appliqu´ees, INRIA, 2015, 20, pp.63-93. <hal-01320625>
  5. wikipedia : Germ(mathematics)
  6. Fixed points of diffeomorphisms, singularities of vector fields and epsilon-neighborhoods of their orbits by Maja Resman
  7. The moduli space of germs of generic families of analytic diffeomorphisms unfolding a parabolic fixed point by Colin Christopher, Christiane Rousseau
  8. wikipedia : Multiplicity (mathematics)
  9. Dynamics of surface homeomorphisms Topological versions of the Leau-Fatou flower theorem and the stable manifold theorem by Le Roux, F
  10. The Dynamics of Complex Polynomial Vector Fields in C by Kealey Dias
  11. LIMITS OF DEGENERATE PARABOLIC QUADRATIC RATIONAL MAPS by XAVIER BUFF, JEAN ECALLE, AND ADAM EPSTEIN
  12. Poincaré linearizers in higher dimensionsby Alastair Fletcher
  13. Théorie des invariants holomorphes. Thèse d'Etat, Orsay, March 1974
  14. Jean Ecalle in french wikipedia
  15. Jean Ecalle home page
  16. mappings by Luna Lomonaco
  17. MODULUS OF ANALYTIC CLASSIFICATION FOR UNFOLDINGS OF GENERIC PARABOLIC DIFFEOMORPHISMSby P. Mardesic, R. Roussarie¤ and C. Rousseau
  18. mathoverflow questions : the functional equation ffxxfx2
  19. Germ in wikipedia
  20. MODULUS OF ANALYTIC CLASSIFICATION FOR UNFOLDINGS OF GENERIC PARABOLIC DIFFEOMORPHISMS by P. Mardesic , R. Roussarie and C. Rousseau
  21. The moduli space of germs of generic families of analytic diffeomorphisms unfolding a parabolic fixed point Colin Christopher, Christiane Rousseau
  22. Mathoverflow : infinitesimal classification of functions near a fixed point upto conjugation
  23. Near parabolic renormalization for unisingular holomorphic maps by Arnaud Cheritat
  24. The Hausdorff dimension of the boundary of the Mandelbrot set. Tesi di Laurea Triennale
  25. PARABOLIC IMPLOSION A MINI-COURSE by ARNAUD CHERITAT
  26. A FAMILY OF DEGREE 4 BLASCHKE PRODUCTS by Jordi Canela
  27. BOF, page 39
  28. Asymptotics of iterated polynomials
  29. commons:Category:Fractals_created_with_Mandel
  30. Program Mandel by Wolf Jung
  31. Program Mandel by Wolf Jung
  32. A Lösungen zu den Übungenn by Michael Becker
  33. Note on dynamically stable perturbations of parabolics by Tomoki Kawahira
  34. wikipedia : Rose (topology)
  35. cauliflower at MuEncy by Robert Munafo
  36. Circle Implodes Into Flames - video by sinflrobot
  37. A Topology Simplification Method For 2D Vector Fields by Xavier Tricoche Gerik Scheuermann Hans Hagen
  38. e ncyclopedia of math  : Sector_in_the_theory_of_ordinary_differential_equations
  39. wikipedia : Multiplicity in mathematics
  40. Mandel: software for real and complex dynamics by Wolf Jung
  41. Local dynamics at a fixed point by Evgeny Demidov
  42. Parabolic Julia Sets are Polynomial Time Computable Mark Braverman
  43. The fixed points and periodic orbits by Evgeny Demidov
  44. Src code of c program for drawing parabolic Julia set
  45. stackexchange questions : what-is-the-shape-of-parabolic-critical-orbit
  46. planetmath : San Marco fractal
  47. wikipedia : Douady rabbit
  48. planetmath : San Marco fractal
  49. Image : Nonstandard Parabolic by Cheritat
  50. Julia set of parabolic case in Maxima CAS
This article is issued from Wikibooks. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.