Fractals/Iterations in the complex plane/Mandelbrot set/centers

< Fractals < Iterations in the complex plane < Mandelbrot set

name ( synonims )

definition

A center of a hyperbolic component H is a parameter ( or point of parameter plane ) such that the corresponding periodic orbit has multiplier= 0." [2]

Initial domain

Period

Period of center = period of critical orbit = period of hyperbolic component


Number of components

Equation :

where :

All values are positive integers

Program in Maxima CAS :

N(p) := block( 
[a:2^(p-1),f:0], 
for f in divisors(p) do 
   if f < p then a : a - N(f), 
return(a)
);

One can run it :

for p:1 thru 50 step 1 do display(N(p));
N(1)=1
N(2)=1
N(3)=3
N(4)=6
N(5)=15
N(6)=27
N(7)=63
N(8)=120
N(9)=252
N(10)=495
N(11)=1023
N(12)=2010
N(13)=4095
N(14)=8127
N(15)=16365
N(16)=32640
N(17)=65535
N(18)=130788
N(19)=262143
N(20)=523770
N(21)=1048509
N(22)=2096127
N(23)=4194303
N(24)=8386440
N(25)=16777200
N(26)=33550335
N(27)=67108608
N(28)=134209530
N(29)=268435455
N(30)=536854005
N(31)=1073741823
N(32)=2147450880
N(33)=4294966269
N(34)=8589869055
N(35)=17179869105
N(36)=34359605280
N(37)=68719476735
N(38)=137438691327
N(39)=274877902845
N(40)=549755289480
N(41)=1099511627775
N(42)=2199022198821
N(43)=4398046511103
N(44)=8796090925050
N(45)=17592186027780
N(46)=35184367894527
N(47)=70368744177663
N(48)=140737479934080
N(49)=281474976710592
N(50)=562949936643600


or :

sum(N(p),p,1,50);

result :

 1125899873221781

How to compute centers ?

Methods :


System of equations defining centers

Centers of hyperbolic components for period 10
Centers of hyperbolic components for period 1-10 computed using irreducible polynomials

Center of hyperbolic component is a point of parameter plain, for which periodic z-cycle is superattracting. It gives a system of 2 equations defining centers of period hyperbolic components :


see definitions for details.

Solving system of equations

Second equation can be solved when critical point is in this cycle :

To solve system put into first equation.

Equation defining centers

One gets equation :

Centers of components are roots of above equation.

Because one can remove z from these equations :

Here is Maxima functions for computing above functions :

P[n]:=if n=1 then c else P[n-1]^2+c;
Reduced equation defining centers

Set of roots of above equation contains centers for period p and its divisors. It is because :

where :

For example :


So one can find irreducible polynomials using :



Here is Maxima function for computing  :


GiveG[p]:=
block(
[f:divisors(p),
t:1], /* t is temporary variable = product of Gn for (divisors of p) other than p */
f:delete(p,f), /* delete p from list of divisors */
if p=1
then return(Fn(p,0,c)),
for i in f do t:t*GiveG[i],
g: Fn(p,0,c)/t,
return(ratsimp(g))
)$

Here is a table with degree of and for periods 1-10 and precision needed to compute roots of these functions.

period
1 1 1 16
2 2 1 16
3 4 3 16
4 8 6 16
5 16 15 16
6 32 27 16
7 64 63 32
8 128 120 64
9 256 252 128
10 512 495 300
11 1024 1023 600

Here is a table of greatest coefficients.

period
1 0 1
2 0 1
3 1 2
4 1 3
5 3 116
6 4 5892
7 11 17999433372
8 21 106250977507865123996
9 44 16793767022807396063419059642469257036652437
10 86 86283684091087378792197424215901018542592662739248420412325877158692469321558575676264
11 179 307954157519416310480198744646044941023074672212201592336666825190665221680585174032224052483643672228833833882969097257874618885560816937172481027939807172551469349507844122611544

Precision can be estimated as bigger than size of binary form of greatest coefficient  :

period
1 1 1 16
2 1 1 16
3 3 2 16
4 6 2 16
5 15 7 16
6 27 13 16
7 63 34 32
8 120 67 64
9 252 144 128
10 495 286 300
11 1023 596 600

Here is Maxima code for

period_Max:11;
/* ----------------- definitions -------------------------------*/
/* basic function  = monic and centered complex quadratic polynomial 
http://en.wikipedia.org/wiki/Complex_quadratic_polynomial
*/
f(z,c):=z*z+c $
/* iterated function */
fn(n, z, c) :=
 if n=1 	then f(z,c)
 else f(fn(n-1, z, c),c) $
/* roots of Fn are periodic point of  fn function */
Fn(n,z,c):=fn(n, z, c)-z $
/* gives irreducible divisors of polynomial Fn[p,z=0,c] */
GiveG[p]:=
block(
[f:divisors(p),t:1],
g,
f:delete(p,f),
if p=1 
then return(Fn(p,0,c)),
for i in f do t:t*GiveG[i],
g: Fn(p,0,c)/t,  
return(ratsimp(g))
 )$
/* degree of function */
GiveDegree(_function,_var):=hipow(expand(_function),_var);  
log10(x) := log(x)/log(10);
/* ------------------------------*/
file_output_append:true; /* to append new string to file */
grind:true;  
for period:1 thru period_Max step 1 do
(
g[period]:GiveG[period], /* function g */
d[period]:GiveDegree(g[period],c), /* degree of function g */
cf[period]:makelist(coeff(g[period],c,d[period]-i),i,0,d[period]), /* list of coefficients */
cf_max[period]:apply(max, cf[period]), /* max coefficient */
disp(cf_max[period]," ",ceiling(log10(cf_max[period]))),
s:concat("period:",string(period),"  cf_max:",cf_max[period]),
stringout("max_coeff.txt",s)/* save output to file as Maxima expressions */
);

Graphical methods for finding centers

All these methods shows centers for period n and its divisors.

Animation showing colors proportional to absolute value of iterations 1-20
Absolute value of first iteration
Color shows in which quadrant 5-th iteration lands
color is proportional to magnitude of zn
color shows in which quadrant zn lands
ninth-decomposition. Image and src code

This is radial nth-decomposition of exterior of Mandelbrot set ( compare it with n-th decomposition of LSM/M )

4 colors are used because there are 4 quadrants :


"... when the four colors are meeting somewhere, you have a zero of q_n(c), i.e., a center of period dividing n. In addition, the light or dark color shows if c is in M." ( Wolf Jung )


Here is fragment of c code for computing 8-bit color for point c = cx + cy * i  :

/* initial value of orbit = critical point Z= 0 */
                       Zx=0.0;
                       Zy=0.0;
                       Zx2=Zx*Zx;
                       Zy2=Zy*Zy;
                       /* the same number of iterations for all points !!! */
                       for (Iteration=0;Iteration<IterationMax; Iteration++)
                       {
                           Zy=2*Zx*Zy + Cy;
                           Zx=Zx2-Zy2 +Cx;
                           Zx2=Zx*Zx;
                           Zy2=Zy*Zy;
                       };
                       /* compute  pixel color (8 bit = 1 byte) */
                       if ((Zx>0) && (Zy>0)) color[0]=0;   /* 1-st quadrant */
                       if ((Zx<0) && (Zy>0)) color[0]=10; /* 2-nd quadrant */
                       if ((Zx<0) && (Zy<0)) color[0]=20; /* 3-rd quadrant */
                       if ((Zx>0) && (Zy<0)) color[0]=30; /* 4-th quadrant */

One can also find cpp code in function quadrantqn from class mndlbrot in mndlbrot.cpp file from source code of program Mandel by Wolf Jung[16]

The differences from standard loop are :

See also code in Sage[17]

Newton method

Newton method for finding one root

Lists of centers

references

  1. Nucleus - From the Mandelbrot Set Glossary and Encyclopedia, by Robert Munafo, (c) 1987-2015.
  2. Surgery in Complex Dynamics by Carsten Lunde Petersen, online paper
  3. NEWTON’S METHOD IN PRACTICE: FINDING ALL ROOTS OF POLYNOMIALS OF DEGREE ONE MILLION EFFICIENTLY by DIERK SCHLEICHER AND ROBIN STOLL
  4. divisor in wikipedia
  5. FF Topic: The Mandelbrot Polynomial Roots Challenge (Read 5233 times)
  6. Piers Lawrence and Rob Corless : Mandelbrot Polynomials and Matrices. 1 ; 048 ; 575 roots of period 21
  7. IAP Poster 2013
  8. [http://www.iec.csic.es/~gerardo/publica/Alvarez98a.pdf Determination of Mandelbrot Set's Hyperbolic Component Centres by G Alvarez, M Romera, G Pastor and F Montoya. Chaos, Solitons & Fractals 1998, Vol 9 No 12 pp 1997-2005]
  9. Myrberg, P J, Iteration der reelen polynome zweiten GradesIII, Ann. Acad. Sci. Fennicae, A. I no. 348, 1964.
  10. evaldraw script that can compute 1 million root by knighty
  11. irreducible divisors at wikipedia
  12. V Dolotin , A Morozow : On the shapes of elementary domains or why Mandelbrot set is made from almost ideal circles ?
  13. [http://www.cerebralmastication.com/2009/02/mandelbrot-set-in-r/ Mandelbrot Set in R by J.D. Long]
  14. Fractal Stream help file
  15. youtube video : Mandelbrot Oscillations
  16. Multiplatform cpp program Mandel by Wolf Jung
  17. Formation of Escape-Time Fractals By Christopher Olah
  18. [http://www.dhushara.com/DarkHeart/DarkHeart.htm _3__The_Dark Exploding the Dark Heart of Chaos by Chris King March-Dec 2009]
  19. Fractal Dragons by James Artherton
  20. Largest Islands by Robert P. Munafo, 2010 Oct 21
  21. mrob : largest-islands.txt
  22. a database of all islands up to period 16, found by tracing external rays by Claude
  23. real centers of components computed by Jay R. Hill
  24. mset centers
This article is issued from Wikibooks. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.