Fractals/Iterations in the complex plane/Fatou coordinate

< Fractals < Iterations in the complex plane

Description

Fatou function

Fatou function  :[3]

Normalization

Fatou coordinate can be normalized = it maps critical point to zero  :[6]


Parabolic fixed point is mapped to point at infinity on Riemann sphere

Fatou coordinate

Fatou coordinate u :

Description at Hyperoperations Wiki


Computing

Programs

QFract

QFract by INOU Hiroyuki and pictures

To build from the source code, you need :

Download source files from this page  :

First unpack the archive as follows

tar zcvf qfract-110725_2-src.tar.gz

Go to the program directory :

cd qfract-110725_2

and edit files :

to adjust your environment. For example in config.h change :

#define PLUGIN_PATH "/Users/inou/prog/qfract4/plugins"
#define COLORMAP_PATH "/Users/inou/prog/qfract4/colormaps"

for your own settings. Then to compile everything run from console :

make

To run the program from console :

./qfract

References

  1. Tetration Forum : Parabolic Iteration
  2. Tetration Forum : Parabolic Iteration, again
  3. stackexchange : half-iterate-of-x^2 + c
  4. S. Morosawa, Y. Nishimura, M. Taniguchi, T. Ueda : Holomorphic Dynamic. January 13, 2000 | ISBN-10: 0521662583 | ISBN-13: 978-0521662581
  5. wiki : Abel%27s_equation
  6. Dynamics in one complex variable: introductory lectures by John W. Milnor, page 7-6
  7. wikipedia : Abel function
  8. new results from complex dynamics at Tetration Forum
  9. Minicourse "Analytic classification of germs of generic families unfolding a parabolic point
  10. Fatou coordinate at Hyperoperations Wiki
  11. Shishikura perturbed Fatou coordinates
This article is issued from Wikibooks. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.