Embedded Control Systems Design/Hostile Environment

< Embedded Control Systems Design

Hostile environment is understood as every possible factor that prevents a system (of any complexity or at any level) from performing its function correctly.

As an embedded systems designer one should make sure that hostile environment is taken in account during the development stage. Although existing systems encountering hostile environments can perfectly be protected as well, it is helpful to take hostile environment into consideration already in the design stage, in order not to introduce hostile environment yourself by faulty system design. Apart from their positive effect on system performance, the countermeasures to hostile environments may have negative effects on other system parameters, e.g. rising economical cost, weight, power consumption, etc. But even if a design contains the necessary countermeasures to hostile environment, a failure of the system is not always inevitable. In case of failure, there are several manners in which a system fails. That is where failure modes turn up. When countermeasures against hostile environment fail, the failure modes need to be observed in a correct way.

In this section we will try to present some basic design rules to deal with hostile environment.

Examples of hostile environments

Below is an inexhaustive list of possible hostile environments

In the following discussion we will take a closer look to some of the topics of the list above.

Consequences of a hostile environment

Possible consequences of an improperly functioning system are

Electromagnetic compatibility

EMC is broadly discussed on Wikipedia. Here we make a brief summary of the phenomenon in order to get as soon as possible to the design countermeasures. The proper functionality of an electrical device might be influenced by unwanted generation, propagation or reception of electromagnetic radiation. Electromagnetic radiation can thus form a hostile environment. In order not to get influenced by electromagnetic radiation a device needs to be electromagnetically compatible with its environment. EMC can be divided in two phenomena: emission and immunity. This subdivision means that a device shouldn’t emit to much radiation but on the other hand should be immune to the radiation emitted by others. It is a design requirement for embedded control systems to overcome these two phenomena. In the European Union it is advised by EU directive 2004/108/CE to check a device for EMC before placing a CE-label.

Sources of electromagnetic waves

Hazards

Solutions

As explained before, EMC problems manifest at two domains: i.e. emission and immunity. It is self-explanatory that countermeasures can be made at both domains. Furthermore, a countermeasure to emission is often as effective as to the immunity of the device and the other way around.

Emission solutions

Immunity solutions

Mutual solutions

Power blackout

A power interruption can take from several milliseconds to several hours or even days. Long blackouts can be overcome by installation of an uninterruptible power supply (UPS). Al sorts and sizes of UPS’s are available. For small electronic devices a battery will do the job, for large plants, hospitals and systems of systems (telecommunication networks) diesel generators are commonly used. Selection and control of UPS’s is a discipline in itself and is widely available on the web and in literature.

Voltage Dips

When the supply voltage only reduces for a couple of milliseconds, it is referred to as a voltage dip or a dropout. These short interruptions are far more frequent than long time blackouts. According to [Schneider, p. 51-58] interruptions of 10ms are likely to occur every 200h in contrast to long time interruptions that occur around once every 10,000h. Voltage dips could lead to production halts that last much longer than the dip itself. According to [Terörde, p. 282] voltage dips of 100ms duration can lead to production halts of 24 hours.

Hazards

Drives of electric AC motors are very sensitive to voltage dips. The AC engine itself can perfectly cope with a transient in the supply. There is DC bus between de AC supply and the AC motor which contains a large capacitor to flatten the DC. When a voltage dip occurs at the supply side, the energy in this capacitor is consumed by the motor within a few milliseconds. The control loops of the engine drive draw their power from this DC bus. As soon as this DC bus goes under a predetermined voltage, the inverter shuts down in order to avoid possible damage. With an offline controller, the motor and production process remain uncontrolled, which can cause economical damage.

Solutions

References

This article is issued from Wikibooks. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.