Classical Mechanics/Introduction

< Classical Mechanics

Physics - Classical Mechanics

Up Next

Overview: What is classical mechanics

As a prelude to this course, let me describe what classical mechanics is about.

Classical mechanics is a part of physics that deals with the motion of point masses (very small things) and rigid bodies (large things that can rotate as a whole but cannot change their shape). This is very useful in practice, since many objects in real life can be approximately considered to be either point masses or rigid bodies in most situations.

Typical problems solved in classical mechanics are:

Of course, one can consider also much more complicated problems than these. For example:

Mathematical methods used

Classical mechanics uses ordinary differential equations (ODEs) to describe the properties of bodies mathematically. Thus, coordinates, angles, etc. are numbers that depend on time, e.g. , and satisfy certain (systems of) ODEs.

One can use several mathematical methods to solve such equations. In some cases, solutions can be found exactly, for instance: has the general solution . In other cases, solutions are found only in terms of integrals that one cannot evaluate in closed form. Sometimes, one can solve the equation approximately using some method such as perturbation theory. Finally, any ODE can be solved numerically (using a computer program) up to a certain precision.

Students of mechanics are expected to learn methods of solving certain standard differential equations that are exactly solvable, for instance: multidimensional harmonic oscillators, motion in 1-dimensional force field, motion in 3-dimensional central force field. Numerical methods for solving ODEs are important in practice but are usually not studied as part of classical mechanics because these methods are not specific to mechanics but are equally applicable to every differential equation. Numerical methods for solving various equations are best studied in a dedicated course that involves hands-on computer programming.

Newtonian mechanics

The first successful theory of classical mechanics is contained in Newton's three laws of mechanics that govern the motion of point masses:

  1. There exist reference frames where a point mass not interacting with other bodies will move with constant speed in the same direction. (If this is not true in some reference frame, then that reference frame is not inertial. Further laws are formulated in inertial frames.)
  2. A point mass interacting with other bodies moves with the acceleration found from , where is the sum of all forces acting on the body, is the mass of the body, and is the acceleration, i.e. the second derivative of the position vector with respect to the time.
  3. All forces are caused by other point masses, and whenever a point mass 1 exerts a force on a point mass 2, the point mass 2 also exerts the force on the point mass 1.

The motion of all point masses is described by differential equations which can be solved directly as long as all relevant forces could be predicted or measured. I assume that you are already familiar with these laws and with typical situations where they apply (e.g. motion of bodies thrown at an angle near Earth) before you start studying theoretical mechanics.

In Newtonian mechanics, a rigid body is simply a collection of point masses connected by "rigid sticks." These sticks are "rigid" because they always produce exactly such forces as to keep constant distances between all points, regardless of any other forces or motions. Thus the motion of rigid bodies can be described without introducing any other special rules. One derives the concept of angular momentum, torque, etc., from Newton's laws without any additional postulates.

From Newtonian mechanics to "theoretical" mechanics

The necessity to consider point masses is certainly inconvenient if one needs to describe liquids and gases, so a special branch of mechanics with its own formalism was developed for that purpose, namely continuum mechanics (mechanics of continuous media). The formalism of continuum mechanics is generalized to field theory where the basic object is not a point mass but a field, i.e. some abstract "substance" that is present at all points in space and shows its influence at every point at once. (Examples are: gravitational field, electric field, and magnetic field.) Such substances may be described by a function of space and time, for example the vector field describes the electric field. The behavior of fields is usually governed by partial differential equations; for example, the electric field and the magnetic field satisfy Maxwell's equations.

As more and more complicated problems needed to be solved, various mathematical tools were developed to simplify and to generalize the mathematical description of mechanics. Finally, the Lagrangian and the Hamiltonian formulations of mechanics were discovered. These two formulations still remain the cornerstones of classical mechanics and field theory, as well as Einstein's theory of relativity, and thus indirectly of all modern theoretical physics. These formulations of mechanics are not based on the assumption of "forces" and are equally applicable to point masses, rigid bodies, fields, and continuous media. The main subject of theoretical mechanics (sometimes also called "analytical mechanics") is the study of these more refined and more general mathematical formulations of classical mechanics.

Overview: what is this "minimal standard course"

Much of theoretical physics is based on concepts from theoretical mechanics, such as the variation of the action, symmetry transformations, or the Hamiltonian. The goal of this course is to introduce the material that you absolutely need to learn if you would like to have a solid foundation for the study of theoretical physics.

In this text, I do not write the words "definition", "theorem", or "proof" like one does in mathematical texts. However, the same structure is present. I show new concepts in boldface within the sentence where they are defined.

Prerequisites

Core material

The minimal standard course in theoretical mechanics consists of:

You usually need to solve several practice problems for each mathematical method, so that you can see how these methods work and gain experience.

Extra material

The above topics are considered standard because one cannot continue studying theoretical physics without having mastered them. There are also more advanced topics that build upon the standard ones and lead to other areas of physics:

Some of these topics are usually included in a theoretical mechanics course at the lecturer's preference. History of theoretical mechanics is usually not studied; rather, students learn the contemporary, very much streamlined and simplified formulation of mechanics.

Suggested books to study

There is an extraordinarily large number of textbooks in theoretical mechanics, because it is a fairly old and well-studied subject. You need any textbook on classical mechanics that you can understand and that talks about "Lagrangians" early on. (Books that only talk about accelerations, forces, and torques may be quite advanced but they do not cover the subject of theoretical mechanics.)

This article is issued from Wikibooks. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.