Calculus/Hyperbolic functions

< Calculus

Theory

Hyperbolic Functions

Definitions

The hyperbolic functions are defined in analogy with the trigonometric functions:

The reciprocal functions csch, sech, coth are defined from these functions:

Some simple identities

Derivatives of hyperbolic functions

Principal values of the main hyperbolic functions

There is no problem in defining principal braches for sinh and tanh because they are injective. We choose one of the principal branches for cosh.

Inverse hyperbolic functions

With the principal values defined above, the definition of the inverse functions is immediate:

We can define , and similarly.

We can also write these inverses using the logarithm function,

These identities can simplify some integrals.

Derivatives of inverse hyperbolic functions

Transcendental Functions

Transcendental functions are not algebraic. These include trigonometric, inverse trigonometric, logarithmic and exponential functions and many others.

This article is issued from Wikibooks. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.