Bicycles/Maintenance and Repair/Cables and Housings

< Bicycles < Maintenance and Repair

General

Bicycle brakes, showing a noodle (top left), and a rubber cable boot (top center).
Typical Brake Details
A. Cable Housing.  B. Housing End Ferrule.  C. Noodle.  D. Housing Detent.
E. Rubber Boot.  F. Cable Clamp.  G. Cable Tail.  H. Cable Cap.
I. Brake Arm  J. Brake Block (Pad).  K. Block Setting Screw.  L. Arm Mounting Bolt.
A rear derailleur with its own barrel-adjuster. Notice the metal ferrule at the point where the cable housing enters.

Both cable and cable housings are used for nearly all braking and gear shifting, and this installation method greatly simplifies the running of cables in the modern bicycle. This use of an inner steel wire in an outer housing is referred to as a Bowden cable, after its inventor. Although some bicycles manage with just a bare inner wire in those places where the cables run straight, all other parts of the cable, and in particular those that might bend while riding, need to be fitted with housings.

In this context the term cable is intended to mean the inner-wire, the steel wire that attaches brake levers to brakes, and shifters to derailleurs. The housing is the flexible outer-tubing that surrounds the cable and acts as a conduit for it. The terms cabling and cable run refer to the Bowden cable as a whole. Perhaps surprisingly, and despite looking just like a plastic tube, a housing is in fact steel-reinforced along its entire length.

How Cable Housings Work

Cable housings always have both of their ends fixed. Fixed in this sense means pressed loosely against the screw-end of a barrel adjuster, or fixed hard into a part of the frame called a cable-stop. Brake housings are also made to terminate hard against one of the two brake arms, with the inner cable continuing to the other brake arm. That is to say, brake gaps depend on the difference in length between the inner cable and its housing.

In the case of a run to a derailleur, the housing abuts with the derailleur's static part and the cable runs on to rotate the moving parts of the shifting gear. A similar argument to the one for brakes applies in that it is the difference between the effective housing length and the inner cable's length that sets the exact degree of operation, (rotation in this case).

Although flexible, a housing is not easily deformed by the action of the cable within it. In braking, for example, the tendency of the cable is to deform the housing in the front cable route, but this is prevented by the housing's longitudinal reinforcement, (the steel wires along its length). The housing has more rigidity than the steel cable itself. To illustrate this point, it will be noticed during even hard braking that the housing loop on the handlebars does not change its shape. That is to say, although flexible, a housing behaves as if were a rigid conduit, and the overall cable pull is noted only at the housing's end, where the brakes or derailleur are located.

Clearly there are two ways to affect the length difference between the cable and its housing. The simplest way is to operate the brake lever or gear shifter. These affect the length of cables and the equipment attached to them respond accordingly, while the housing length remains constant. The other method, used for fine adjustments only, acts on the effective housing length.

Because the housing resists length changes, its length can only be changed by an additional in-line element; it is called a barrel-adjuster. In fact, a barrel adjuster should be thought of as an extension of its associated section of cable housing. It is used when only a few millimeters of adjustment is required. Continuing with the brake example: Recall that one end of a brake housing rests in the end of the barrel-adjuster, and the other elsewhere. When the looped cable run at the handlebars is extended by unscrewing the brake's barrel adjuster, then it follows that a few millimeters of cable must also enter that section to occupy it. In fact, the cable moves into the housing's end (at the brakes) to achieve this, with the result that the attached brake arm is pulled inward. The housing is effectively lengthened by unscrewing the barrel-adjuster, and this increasing of the housing length with respect to cable length reduces the brake gaps. The converse action occurs when the housing is effectively shortened; the barrel-adjuster is screwed in to increase the brake gaps.

It is perhaps of interest to note that some housings are installed with two sections and a bare cable between them. That is to say, the section of housing at the handlebar's barrel adjuster runs to a fixed point on the frame, called a cable-stop. Then the inner wire runs on as a bare cable, and through another housing-end that is also fixed in a cable-stop. That second housing then ends at the brake arms or derailleur in the usual way. In this case the principle remains the same as for a single housing, where sections without barrel-adjusters act merely to guide the cable and avoid resistance at transitions. Sections that are straight and lack barrel-adjusters need not have any housings at all.

Sometimes there are two barrel-adjusters in a single cable run, where the second is located on the fixed part of a derailleur. The adjustments of the two are additive, where both can affect the tension. They behave identically in their cable lengthening and shortening behaviour. Note the emphasis in this page on ferrules making a loose fit in the ends of barrel-adjusters. If a ferrule there made a tight fit then the entire housing would twist when the barrel was turned, so confounding the effort.

During the normal operation of shifters and brake levers the cables move in and out of the housings. In the case of a shifter, the cable is pulled-in or extended by only a few millimeters at a time; about 2.3mm for Shimano 10-speeds up to 4.5mm for SRAM 7-speed 1:1 GripShifts. Brake cable also moves only a few millimeters, although it is often more than the 2mm or so needed to close the brake gaps, because of the leverage effect of the brake arms. If, during these operations, the cable housings were also to change in length, brakes might bind and shifting would become uncertain. Housings of good quality are manufactured to avoid casual lengthening, and are sometimes described as incompressible. However, the use of such an expression does not in itself guarantee that a housing is suitable for the task, so the best approach is to use only those products that are stated by the manufacturer as intended for the specific purpose.

Cabling Components

A brake housing, pared to show its parts. Notice the inner plastic sleeve for the cable and the strong spiral reinforcement. It is rarely now used for gear-shifting since the introduction of housings with longitudinal support.
A gear-shift housing (magnified). It also has an inner plastic sleeve for the cable, but in this case has longitudinal reinforcement to better resist length changes. It is not used for braking, since it is weaker than the spirally wound version.

The common parts of a cable installation are these. A steel cable, consisting of several twisted wires runs the entire length of the cable housing and is usually contained in an inner-sheath for its protection and improved lubrication. The inner-sheath and its cable are housed within a steel-reinforced plastic tube.

Inner Wires

Housing Types

Various cable ends. From left to right, a cable cap, a brake cable anchor with its housing and crimped ferrule, and a shift cable anchor

Ferrules and Fittings

A Universal Brake Cable: Each cable has two anchor types; the one on the right is for MTB bikes, (straight handlebars), and the one on the left is for road bikes, (drop handlebars). The end that is not needed is removed by cutting.


Various barrel adjusters, frame stops, and cable caps.
A brake barrel adjuster. The large ring is a lock for the smaller one, the adjuster. Notice the crimped ferrule where the housing makes a loose entry.
This kind of adjuster is found on some rear derailleurs. It can exist in addition to one on the shifter.
A cable stop welded to the frame. A silver housing with a ferrule fits at the bottom and the internal steel cable continues at the top.
Note the black barrel adjuster on the gear shifter and the silver one on the brake lever.
A typical plastic barrel-adjuster. The housing normally would abut within the adjuster-cap while the cable continues onward.
This type of cable cap is crimped onto cable ends, like the ones on the brake and derailleur.


Installing Housings

Minor Repairs

Cable housings on a bike's handlebars. The gradual sweeps are good, but they might need slightly more spare for any rework .

It is rare for complete housings to need replaced, and most of the time it is a matter of trimming a bad housing end at the barrel-adjuster, replacing ferrules, or tidying up a messy cable end. Provided that the handlebar loop in the housing is fairly generous, and in particular, provided that about ten or twelve centimeters (about 4 inches or so) could be removed from it there without any problem, then the existing housing might be reused for all three of these situations. The basis for this comment is as follows:

Housing Length

Occasionally cable housings are completely replaced, for example, in favor of the new colored housing varieties, or when the wrong thing was installed in the first place. It might also happen that numerous changes have left the housings a bit short. In any case, when replacing housings be sure to consider the following points:

Cutting

Cable cutters are used to cut bicycle cables and housings. Few alternatives exist for this purpose, the specially notched blades being designed to make a clean cut without undue crushing of the housing's end.

The only reliable way to cut housings and cables is with a special cable cutter made for the purpose; these are available from most bike shops and by internet purchase. A Dremel tool with a cutting disk will work great, also. Pliers, side cutters, hacksaws, all will make a mess of it. A housing cutter has a v-shape in each blade that avoids collapsing the end while it is cut, and even then the end of cut housings need cleared so that the cable can fit into the inner sleeve. Some housing kits are supplied for particular bikes, cut to length, and with the ferrules pre-fitted, but the material that follows assumes that they must be constructed. A housing cutter can also be used to cut the inner cable, but before doing any stripping of the old work or cutting, it is as well to also be aware of these points:

Assembly

Because each change to installed cabling and housing causes the loss of cable length, it is best if assembly and final clamping of cable is put off until all changes are complete. The general procedure, starting at the handlebars, is as follows:

See Also

This article is issued from Wikibooks. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.