
Two dimensional noise

This idea of noise values living in a one-dimensional space is important

because it leads us right into a discussion of two-dimensional space. Let’s

think about this for a moment. With one-dimensional noise, we have a

sequence of values in which any given value is similar to its neighbour.

Because the value is in one dimension, it only has two neighbours: a value

that comes before it (to the left on the graph) and one that comes after it

(to the right).

Nature of Code Image

Figure I.10: 1D Noise

Two-dimensional noise works exactly the same way conceptually. The

difference of course is that we aren’t looking at values along a linear path,

but values that are sitting on a grid. Think of a piece of graph paper with

numbers written into each cell. A given value will be similar to all of its

neighbours: above, below, to the right, to the left, and along any diagonal.

Nature of Code Image

Figure I.11: 2D Noise

If you were to visualize this graph paper with each value mapped to the

brightness of a colour, you would get something that looks like clouds.

White sits next to light gray, which sits next to gray, which sits next to

dark gray, which sits next to black, which sits next to dark gray, etc.

Nature of Code Image

This is why noise was originally invented. You tweak the parameters a bit

or play with colour to make the resulting image look more like marble or

wood or any other organic texture.

Let’s take a quick look at how to implement two-dimensional noise in

ProcessingJS. If you wanted to colour every pixel of a window randomly,

you would need a nested loop, one that accessed each pixel and picked a

random brightness.

for (var x = 0; x < 100; x++) {

 for (var y = 0; y < 100; y++) {

 // A random brightness!

 var bright = random(255);

 stroke(bright, bright, bright);

 point(x, y);

 }

}

To colour each pixel according to the noise() function, we’ll do exactly the

same thing, only instead of calling random() we’ll call noise().

var bright = map(noise(x,y), 0, 1, 0, 255);

This is a nice start conceptually—it gives you a noise value for every (x,y)

location in our two-dimensional space. The problem is that this won’t have

the cloudy quality we want. Jumping from pixel 200 to pixel 201 is too

large of a jump through noise. Remember, when we worked with one-

dimensional noise, we incremented our time variable by 0.01 each frame,

not by 1! A pretty good solution to this problem is to just use different

variables for the noise arguments. For example, we could increment a

variable called xoff each time we move horizontally, and a yoff variable

each time we move vertically through the nested loops.

var xoff = 0.0;

for (var x = 0; x < 100; x++) {

 var yoff = 0.0;

 for (var y = 0; y < 100; y++) {

 var bright = map(noise(xoff, yoff), 0, 1, 0, 255);

 stroke(bright, bright, bright);

 point(x, y);

 yoff += 0.01;

 }

 xoff += 0.01;

}

We’ve examined several traditional uses of Perlin noise in this tutorial.

With one-dimensional noise, we used smooth values to assign the location

of an object to give the appearance of wandering. With two-dimensional

noise, we created a cloudy pattern with smoothed values on a plane of

pixels. It’s important to remember, however, that Perlin noise values are

just that—values. They aren’t inherently tied to pixel locations or colour.

Any example in these tutorials that has a variable could be controlled via

Perlin noise. When we model a wind force, its strength could be controlled

by Perlin noise. Same goes for the angles between the branches in a fractal

tree pattern, or the speed and direction of objects moving along a grid in a

flow field simulation, like in the program below.

We began the last tutorial by talking about how randomness can be a

crutch. In many ways, it’s the most obvious answer to the kinds of

questions we ask continuously—how should this object move? What

colour should it be? This obvious answer, however, can also be a lazy one.

As we finish off this tutorial, it’s also worth noting that we could just as

easily fall into the trap of using Perlin noise as a crutch. How should this

object move? Perlin noise! What colour should it be? Perlin noise! How

fast should it grow? Perlin noise!

The point of all of this is not to say that you should or shouldn’t use

randomness. Or that you should or shouldn’t use Perlin noise. The point is

that the rules of your system are defined by you, and the larger your

toolbox, the more choices you’ll have as you implement those rules. The

goal of these tutorials is to help you fill your toolbox. If all you know is

one type of randomness, then all of your designs will include only one

type of randomness. Perlin noise is another tool for randomness you can

use in your programs. After a little practice with Perlin noise we will

move on to another type of tool- vectors!

