
Trig and forces: the pendulum 

 

Do you remember reading about Newton’s laws of motion from a couple 

sections back?  We are just about ready to convert those laws into running 

code. After all, it’s been nice learning about triangles and tangents and 

waves, but really, the core of this course is about simulating the physics of 

moving bodies. Let’s take a look at how trigonometry can help us with this 

pursuit. 

 

Diagram of pendulum with angles 

A pendulum is a bob suspended from a pivot. Obviously a real-world 

pendulum would live in a 3D space, but we’re going to look at a simpler 

scenario, a pendulum in a 2D space—the program canvas. 

In the Forces section, we learned how a force (such as the force of gravity 

shown in the diagram above) causes an object to accelerate. **F = M * 

A** or **A = F / M**. In this case, however, the pendulum bob doesn’t 

simply fall to the ground because it is attached by an arm to the pivot 

point. And so, in order to determine its angular acceleration, we not only 

need to look at the force of gravity, but also the force at the angle of the 

pendulum’s arm (relative to a pendulum at rest with an angle of 0). 



In the above case, since the pendulum’s arm is of fixed length, the only 

variable in the scenario is the angle. We are going to simulate the 

pendulum’s motion through the use of angular velocity and acceleration. 

The angular acceleration will be calculated using Newton’s second law 

with a little trigonometry twist. 

Let’s zoom in on the right triangle from the pendulum diagram. 

 

We can see that the force of the pendulum (F_pFpF, start subscript, p, end 

subscript) should point perpendicular to the arm of the pendulum in the 

direction that the pendulum is swinging. After all, if there were no arm, the 

bob would just fall straight down. It’s the tension force of the arm that 

keeps the bob accelerating towards the pendulum’s rest state. Since the 

force of gravity (F_gFgF, start subscript, g, end subscript) points 

downward, by making a right triangle out of these two vectors, we’ve 

accomplished something quite magnificent. We’ve made the force of 

gravity the hypotenuse of a right triangle and separated the vector into two 

components, one of which represents the force of the pendulum. Since sine 

equals opposite over hypotenuse, we have: 



sine(\theta) = \frac{F_p}{F_g}sine(θ)=FgFps, i, n, e, left 

parenthesis, theta, right parenthesis, equals, start fraction, F, start 

subscript, p, end subscript, divided by, F, start subscript, g, end subscript, 

end fraction 

Therefore: 

F_p = F_g \times sine(\theta)Fp=Fg×sine(θ)F, start subscript, p, 

end subscript, equals, F, start subscript, g, end subscript, times, s, i, n, e, 

left parenthesis, theta, right parenthesis 

Lest we forget, we’ve been doing all of this with a single question in mind: 

What is the angular acceleration of the pendulum? Once we have the 

angular acceleration, we’ll be able to apply our rules of motion to find the 

new angle for the pendulum. 

angular velocity = angular velocity + angular acceleration 

angle = angle + angular velocity 

The good news is that with Newton’s second law, we know that there is a 

relationship between force and acceleration, namely F = M \times 

AF=M×AF, equals, M, times, A, orA = F / MA=F/MA, equals, F, 

slash, M, and we can use that relationship with the formula above to figure 

out the angular acceleration. See if you can follow this: 

Starting with: 

pendulum force = force due to gravity * sine(θ) 

Then we divide the right side by mass, to come up with the acceleration, 

based on Newton's second law: 

pendulum angular acceleration = (force due to gravity * sine(θ)) / 

mass 

Then we realize we can just divide the force due to gravity by mass, and 

that's the same thing as acceleration due to gravity, so we'll just substitute 



that: 

pendulum angular acceleration = acceleration due to gravity * sine (θ) 

Ta-da! We now have a way to calculate the angular acceleration. 

This is a good time to remind ourselves that we’re ProcessingJS 

programmers and not physicists. Yes, we know that the acceleration due to 

gravity on earth is 9.8 meters per second squared. But this number isn’t 

relevant to us. What we have here is just an arbitrary constant (we’ll call it 

gravity), one that we can use to scale the acceleration to something that 

feels right. 

angular acceleration = gravity * sine(θ) 

Amazing. After all that, the formula is so simple. You might be 

wondering, why bother going through the derivation at all? I mean, 

learning is great and all, but we could have easily just said, "Hey, the 

angular acceleration of a pendulum is some constant times the sine of the 

angle." This is just another moment in which we remind ourselves that the 

purpose of the course is not to learn how pendulums swing or gravity 

works. The point is to think creatively about how things can move about 

the screen in a computationally based graphics system. The pendulum is 

just a case study. If you can understand the approach to programming a 

pendulum, then however you choose to design your onscreen world, you 

can apply the same techniques. 

Of course, we’re not finished yet. We may be happy with our simple, 

elegant formula, but we still have to apply it in code. This is most 

definitely a good time to practice our object-oriented programming skills 

and create a Pendulum object. Let’s think about all the properties we’ve 

encountered in our pendulum discussion that the object will need to keep 

track of: 

 arm length 



 angle 

 angular velocity 

 angular acceleration 

Plus we'll also want to specify where the pendulum is hanging from, so we 

could start with a constructor like this: 

var Pendulum  = function(origin, armLength) { 

    this.origin = origin; 

    this.armLength = armLength; 

 

    this.angle = PI/4; 

    this.aVelocity = 0.0; 

    this.aAcceleration = 0.0; 

}; 

 

We’ll also need to write an update() method to update the pendulum’s 

angle according to our formula… 

Pendulum.prototype.update = function() { 

    // Arbitrary constant 

    var gravity = 0.4; 

    // Calculate acceleration 

    this.aAcceleration = -1 * gravity * sin(this.angle); 

    // Increment velocity 

    this.aVelocity += this.aAcceleration; 

    // Increment angle 

    this.angle += this.aVelocity;     

}; 



 

…as well as a display() method to draw the pendulum in the window. This 

begs the question: “Um, where do we draw the pendulum?” We know the 

angle and the arm length, but how do we know the x,y (Cartesian!) 

coordinates for both the pendulum’s pivot point (let’s call it origin) and 

bob location (let’s call it position)? This may be getting a little tiring, but 

the answer, yet again, is trigonometry. Let's reference the diagram to the 

left. 

The origin is just something we make up, as is the arm length. Let’s say 

we construct our pendulum like so: 

var p = new Pendulum(new PVector(100, 10), 125); 

 

We're storing the current angle on the angle property. So relative to the 

origin, the pendulum’s position is a polar coordinate: (r,angle). And we 

need it to be Cartesian. Luckily for us, we spent some time in the Angles 

section deriving the formula for converting from polar to Cartesian. In that 

section, our angle was relative to the horizontal axis, but here, it's relative 

to the vertical axis, so we end up using sin() for the x position 

and cos() for the y position, instead of cos() and sin(), respectively. And 



so, we can calculate the position relative to the origin using that 

conversion formula, and then add the origin position to it: 

this.position = new PVector( 

   this.armLength * sin(this.angle), 

   this.armLength * cos(this.angle)); 

this.position.add(this.origin); 

stroke(0, 0, 0); 

fill(175, 175, 175); 

line(this.origin.x, this.origin.y, this.position.x, this.position.y); 

ellipse(this.position.x, this.position.y, 16, 16); 

 

Before we put everything together, there’s one last little detail I neglected 

to mention. Let’s think about the pendulum arm for a moment. Is it a metal 

rod? A string? A rubber band? How is it attached to the pivot point? How 

long is it? What is its mass? Is it a windy day? There are a lot of questions 

that we could continue to ask that would affect the simulation. We’re 

living, of course, in a fantasy world, one where the pendulum’s arm is 

some idealized rod that never bends and the mass of the bob is 

concentrated in a single, infinitesimally small point. 

Nevertheless, even though we don’t want to worry ourselves with all of the 

questions, we should add one more variable to our calculation of angular 

acceleration. To keep things simple, in our derivation of the pendulum’s 

acceleration, we assumed that the length of the pendulum’s arm is 1. In 

fact, the length of the pendulum’s arm affects the acceleration greatly: the 

longer the arm, the slower the acceleration. To simulate a pendulum more 

accurately, we divide by that length, in this case armLength. For a more 

involved explanation, visit The Simple Pendulum website. 

this.aAcceleration = (-1 * gravity / this.armLength) * sin(this.angle); 



Finally, a real-world pendulum is going to experience some amount of 

friction (at the pivot point) and air resistance. With our code as is, the 

pendulum would swing forever, so to make it more realistic we can use a 

“damping” trick. I say trick because rather than model the resistance forces 

with some degree of accuracy (as we did in the Forces section), we can 

achieve a similar result by simply reducing the angular velocity during 

each cycle. The following code reduces the velocity by 1% (or multiplies it 

by 99%) during each frame of animation: 

this.aVelocity *= this.damping; 

 

Putting everything together, we have the following example. We've added 

a bit of functionality to make it easy to drag the bob and drop it from 

different heights, too. Try it out!  

// A Simple Pendulum Object 

// Includes functionality for user to click and drag the pendulum 

 

angleMode = "radians"; 

 

// This constructor could be improved to allow a greater variety of pendulums 

var Pendulum  = function(origin, armLength) { 

    this.origin = origin; 

    this.armLength = armLength; 

    this.position = new PVector(); 

    this.angle = PI/4; 

     

    this.aVelocity = 0.0; 

    this.aAcceleration = 0.0; 

    // Arbitrary damping 



    this.damping = 0.995; 

    // Arbitrary ball radius 

    this.ballRadius = 48.0;       

    this.dragging = false; 

}; 

 

Pendulum.prototype.go = function() { 

    this.update(); 

    this.display(); 

}; 

 

Pendulum.prototype.update = function() { 

    // As long as we aren't dragging the pendulum, let it swing! 

    if (!this.dragging) { 

        // Arbitrary constant 

        var gravity = 0.4; 

        // Calculate acceleration (see: http://www.myphysicslab.com/pendulum1.html) 

        this.aAcceleration = (-1 * gravity / this.armLength) * sin(this.angle); 

        // Increment velocity 

        this.aVelocity += this.aAcceleration; 

        // Arbitrary damping 

        this.aVelocity *= this.damping; 

        // Increment angle 

        this.angle += this.aVelocity;                          

    } 

}; 

 



Pendulum.prototype.display = function() { 

    // Polar to cartesian conversion 

    this.position = new PVector( 

       this.armLength * sin(this.angle), 

       this.armLength * cos(this.angle)); 

    this.position.add(this.origin); 

    stroke(0, 0, 0); 

    strokeWeight(2); 

    // Draw the arm 

    line(this.origin.x, this.origin.y, this.position.x, this.position.y); 

    fill(175, 175, 175); 

    if (this.dragging) { 

        fill(0, 0, 0); 

    } 

    // Draw the ball 

    ellipse(this.position.x, this.position.y, this.ballRadius, this.ballRadius); 

}; 

 

// The methods below are for mouse interaction 

 

// This checks to see if we clicked on the pendulum ball 

Pendulum.prototype.handleClick = function(mx, my) { 

    var d = dist(mx, my, this.position.x, this.position.y); 

    if (d < this.ballRadius) { 

        this.dragging = true; 

    } 

}; 



// This tells us we are not longer clicking on the ball 

Pendulum.prototype.stopDragging = function() { 

    this.aVelocity = 0; // No velocity once you let go 

    this.dragging = false; 

}; 

 

Pendulum.prototype.handleDrag = function(mx, my) { 

    // If we are dragging the ball, we calculate the angle between the  

    // pendulum origin and mouse location 

    // we assign that angle to the pendulum 

    if (this.dragging) { 

      // Difference between 2 points 

      var diff = PVector.sub(this.origin, new PVector(mx, my)); 

      // Angle relative to vertical axis 

      this.angle = atan2(-1*diff.y, diff.x) - PI/2; 

    } 

}; 

 

var p = new Pendulum(new PVector(width/2, 0), 175); 

 

var draw = function() { 

    background(255); 

    p.go(); 

}; 

 

mousePressed = function() { 

    p.handleClick(mouseX, mouseY); 



}; 

 

mouseDragged = function() { 

    p.handleDrag(mouseX, mouseY); 

}; 

 

mouseReleased = function() { 

    p.stopDragging(); 

}; 

 


