
Static functions vs. instance methods

Before we get to Algorithm #3 (accelerate towards the mouse), we need to

cover one more rather important aspect of working with vectors and the

PVector object: the difference between using static functions and instance

methods.

Forgetting about vectors for a moment, take a look at the following code:

var x = 0;

var y = 5;

x = x + y;

Pretty simple, right? x has the value of 0, we add y to it, and now x is equal

to 5. We could write the corresponding code pretty easily based on what

we’ve learned about PVector.

var v = new PVector(0,0);

var u = new PVector(4,5);

v.add(u);

The vector v has the value of (0,0), we add u to it, and now v is equal to

(4,5). Easy, right?

Let’s take a look at another example of some simple math:

var x = 0;

var y = 5;

var z = x + y;

x has the value of 0, we add y to it, and store the result in a new variable z.

The value of x does not change in this example, and neither does y! This

may seem like a trivial point, and one that is quite intuitive when it comes

to mathematical operations with numbers. However, it’s not so obvious

with mathematical operations in PVector. Let’s try to write the code based

on what we know so far.

var v = new PVector(0,0);

var u = new PVector(4,5);

var w = v.add(u); // Don’t be fooled; this is incorrect!!!

The above might seem like a good guess, but it’s just not the way the

PVector object works. If we look at the definition of add()...

PVector.prototype.add = function(v) {

 this.x = this.x + v.x;

 this.y = this.y + v.y;

 };

...we see that this code does not accomplish our goal. First, it does not

return a new PVector (there is no return statement) and second, it changes

the value of the PVector upon which it is called. In order to add two PVector

objects together and return the result as a new PVector, we must use the

"static" add() function.

A "static" function is a function that is defined on an object, but it doesn't

change properties of the object. So why even define it on the object?

Typically, it has something to do with the object, so it is logical to attach it

to it. It treats the object more like a namespace. For example, all the static

functions on PVector perform some sort of manipulation on passed

in PVector objects and always return back some value. We could define

those functions globally as well, but this way, we avoid global functions

and have better ways of grouping related functionality.

Let's contrast. Here's how we use the add() instance method:

v.add(u);

That line of code would modify v, so we wouldn't need to save a return

value. Conversely, here's how we use the add() static function:

var w = PVector.add(v, u);

If we didn't save the result of that function into a variable, that line of code

would be useless, because the static version doesn't change the objects

themselves. PVector's static functions allow us to perform generic

mathematical operations on PVector objects without having to adjust the

value of one of the input PVectors.

Here's how we would write the static version of add():

PVector.add = function(v1, v2) {

 var v3 = new PVector(v1.x + v2.x, v1.y + v2.y);

 return v3;

};

There are several differences here:

 We define the function directly on the object, not on its prototype

 We never access the this keyword inside the function

 We return a value from the function

The PVector object has static versions of add(), sub(), mult(), and div(). It

also has additional static functions that don't exist as instance methods,

like angleBetween(), dot(), and cross(). We'll find ourselves using these

functions as we continue making programs with PVector.

