
Spring forces

In the beginning of this section, we looked at modelling simple harmonic

motion by mapping the sine wave to a pixel range, and had you model a

bob on a spring using that sine wave. While using the sin() function is a

quick-and-dirty, one-line-of-code way of getting something up and

running, it won’t do if what we really want is to have a bob hanging from a

spring in a two-dimensional space that responds to other forces in the

environment (wind, gravity, etc.) To accomplish a simulation like this (one

that is identical to the pendulum example, only now the arm is a springy

connection), we need to model the forces of a spring using PVector.

The force of a spring is calculated according to Hooke’s law, named for

Robert Hooke, a British physicist who developed the formula in 1660.

Hooke originally stated the law in Latin: "Ut tensio, sic vis," or “As the

extension, so the force.” Let’s think of it this way:

<div class="callout">

The force of the spring is directly proportional to the extension of the

spring.

</div>

In other words, if you pull on the bob a lot, the force will be strong; if you

pull on the bob a little, the force will be weak. Mathematically, the law is

stated as follows:

F_spring = -k \times xFspring=−k×xF, start subscript, s, end

subscript, p, r, i, n, g, equals, minus, k, times, x

 k is constant and its value will ultimately scale the force. Is the spring

highly elastic or quite rigid?

 x refers to the displacement of the spring, i.e. the difference between the

current length and the rest length. The rest length is defined as the length

of the spring in a state of equilibrium.

Now remember, force is a vector, so we need to calculate both magnitude

and direction. Let’s look at one more diagram of the spring and label all

the givens we might have in a program.

Let’s establish the following three starting variables as shown in the

diagram above, with some reasonable values.

var anchor = new PVector(100, 10);

var bob = new PVector(110, 100);

var restLength = 20;

First, let’s use Hooke’s law to calculate the magnitude of the force. We

need to know k and x. k is easy; it’s just a constant, so let’s make

something up.

var k = 0.1;

x is perhaps a bit more difficult. We need to know the “difference between

the current length and the rest length.” The rest length is defined as the

variable restLength. What’s the current length? The distance between the

anchor and the bob. And how can we calculate that distance? How about

the magnitude of a vector that points from the anchor to the bob? (Note

that this is exactly the same process we employed when calculating

distance in the Gravitational Attraction section.)

var dir = PVector.sub(bob, anchor);

var currentLength = dir.mag();

var x = restLength - currentLength;

Now that we’ve sorted out the elements necessary for the magnitude of the

force (-1 * k * x), we need to figure out the direction, a unit vector

pointing in the direction of the force. The good news is that we already

have this vector. Right? Just a moment ago we thought to ourselves: “How

we can calculate that distance? How about the magnitude of a vector that

points from the anchor to the bob?” Well, that same vector is the direction

of the force!

In the diagram above, we can see that if we stretch the spring beyond its

rest length, there should be a force pulling it back towards the anchor. And

if it shrinks below its rest length, the force should push it away from the

anchor. This reversal of direction is accounted for in the formula with the -

1. And so all we need to do is normalize the PVector we used for the

distance calculation! Let’s take a look at the code and rename

that PVector variable as “force.”

var k = 0.01;

var force = PVector.sub(bob, anchor);

var currentLength = force.mag();

var x = restLength - currentLength;

// Direction of spring force, a unit vector

force.normalize();

// Putting it together: direction and magnitude!

force.mult(-1 * k * x);

Now that we have the algorithm worked out for computing the spring

force vector, the question remains: what object-oriented programming

structure should we use? This, again, is one of those situations in which

there is no “correct” answer. There are several possibilities; which one we

choose depends on the program’s goals and one’s own personal coding

style. Still, since we’ve been working all along with a Mover object, let’s

keep going with this same framework. Let’s think of our Mover object as

the spring’s “bob.” The bob needs location, velocity, and acceleration

vectors to move about the screen. Perfect—we’ve got that already! And

perhaps the bob experiences a gravity force via the applyForce() method.

Just one more step—we need to apply the spring force:

var bob = new Bob();

draw = function() {

 // Our “make-up-a-gravity force”

 var gravity = new PVector(0, 1);

 bob.applyForce(gravity);

 // We need to also calculate and apply a spring force!

 var springForce = _______________????

 bob.applyForce(spring);

 // Our standard update() and display() methods

 bob.update();

 bob.display();

};

One option would be to write out all of the spring force code in the main

draw() loop. But thinking ahead to when you might have multiple bobs and

multiple spring connections, it makes a good deal of sense to write an

additional object, a Spring object. As shown in the diagram above, the Bob

object keeps track of the movements of the bob; the Spring object keeps

track of the spring’s anchor and its rest length and calculates the spring

force on the bob.

This allows us to write this lovely code to tie them together:

var bob = new Bob();

var spring = new Spring();

draw = function() {

 // Our “make-up-a-gravity force”

 var gravity = new PVector(0, 1);

 bob.applyForce(gravity);

 // Spring.connect will take care of computing and applying the spring

force

 spring.connect(bob);

 // Our standard update() and display() methods

 bob.update();

 bob.display();

};

You may notice here that this is quite similar to what we did in the Gravity

section with an attractor. There, we said something like:

var force = attractor.calculateAttraction(mover);

mover.applyForce(force);

The analogous situation here with a spring would be:

var force = spring.calculateForce(bob);

bob.applyForce(force);

Nevertheless, in this example, all we did was:

spring.connect(bob);

What gives? Why don’t we need to call applyForce() on the bob? The

answer is, of course, that we do need to call applyForce() on the bob. Only

instead of doing it in draw(), we’re just demonstrating that a perfectly

reasonable (and sometimes preferable) alternative is to ask

the connect()method to internally handle calling applyForce() on the bob.

Spring.prototype.connect(bob) {

 var force = /* some fancy calculations */;

 bob.applyForce(force);

};

Why do it one way with the Attractor object and another way with the

Spring object? When we were first learning about forces, it was a bit

clearer to show all the forces being applied in the main draw() loop, and

hopefully this helped you learn about force accumulation. Now that we’re

more comfortable with that, perhaps it’s simpler to embed some of the

details inside the objects themselves.

Let's put it all together, in the program embedded below. We've added a

few things: (1) the Bob object includes functions for mouse interactivity so

that the bob can be dragged around the window, and (2) the Spring object

includes a function to constrain the connection’s length between a

minimum and a maximum.

var Spring = function(x, y, l) {

 this.anchor = new PVector(x, y);

 this.restLength = l;

 this.k = 0.2;

};

// Calculate and apply spring force

Spring.prototype.connect = function(b) {

 // Vector pointing from anchor to bob location

 var force = PVector.sub(b.position, this.anchor);

 // What is distance

 var d = force.mag();

 // Stretch is difference between current distance and rest length

 var stretch = d - this.restLength;

 // Calculate force according to Hooke's Law

 // F = k * stretch

 force.normalize();

 force.mult(-1 * this.k * stretch);

 b.applyForce(force);

};

// Constrain the distance between bob and anchor between min and max

Spring.prototype.constrainLength = function(b, minLength, maxLength) {

 var dir = PVector.sub(b.position, this.anchor);

 var d = dir.mag();

 // Is it too short?

 if (d < minLength) {

 dir.normalize();

 dir.mult(minLength);

 // Reset location and stop from moving (not realistic physics)

 b.position = PVector.add(this.anchor, dir);

 b.velocity.mult(0);

 // Is it too long?

 }

 else if (d > maxLength) {

 dir.normalize();

 dir.mult(maxLength);

 // Reset location and stop from moving (not realistic physics)

 b.position = PVector.add(this.anchor, dir);

 b.velocity.mult(0);

 }

};

Spring.prototype.display = function() {

 stroke(0);

 fill(175);

 strokeWeight(2);

 rectMode(CENTER);

 rect(this.anchor.x, this.anchor.y, 10, 10);

};

Spring.prototype.displayLine = function(b) {

 strokeWeight(2);

 stroke(0);

 line(b.position.x, b.position.y, this.anchor.x, this.anchor.y);

};

// Bob object, just like our regular Mover (location, velocity, acceleration, mass)

var Bob = function(x, y) {

 this.position = new PVector(x,y);

 this.velocity = new PVector();

 this.acceleration = new PVector();

 this.mass = 24;

 // Arbitrary damping to simulate friction / drag

 this.damping = 0.98;

 // For user interaction

 this.dragOffset = new PVector();

 this.dragging = false;

};

// Standard Euler integration

Bob.prototype.update = function() {

 this.velocity.add(this.acceleration);

 this.velocity.mult(this.damping);

 this.position.add(this.velocity);

 this.acceleration.mult(0);

};

// Newton's law: F = M * A

Bob.prototype.applyForce = function(force) {

 var f = force.get();

 f.div(this.mass);

 this.acceleration.add(f);

};

// Draw the bob

Bob.prototype.display = function() {

 stroke(0);

 strokeWeight(2);

 fill(175);

 if (this.dragging) {

 fill(50);

 }

 ellipse(this.position.x, this.position.y, this.mass*2, this.mass*2);

};

Bob.prototype.handleClick = function(mx, my) {

 var d = dist(mx, my, this.position.x, this.position.y);

 if (d < this.mass) {

 this.dragging = true;

 this.dragOffset.x = this.position.x-mx;

 this.dragOffset.y = this.position.y-my;

 }

};

Bob.prototype.stopDragging = function() {

 this.dragging = false;

};

Bob.prototype.handleDrag = function(mx, my) {

 if (this.dragging) {

 this.position.x = mx + this.dragOffset.x;

 this.position.y = my + this.dragOffset.y;

 }

};

// Create objects at starting location

// Note third argument in Spring constructor is "rest length"

var bob = new Bob(width/2, 100);

var spring = new Spring(width/2, 10, 100);

var draw = function() {

 background(255);

 // Apply a gravity force to the bob

 var gravity = new PVector(0,2);

 bob.applyForce(gravity);

 // Connect the bob to the spring (this calculates the force)

 spring.connect(bob);

 // Constrain spring distance between min and max

 spring.constrainLength(bob, 30, 200);

 // Update bob

 bob.update();

 // Draw everything

 spring.displayLine(bob); // Draw a line between spring and bob

 bob.display();

 spring.display();

 fill(0);

 text("click on bob to drag", 10, height-5);

};

mousePressed = function() {

 bob.handleClick(mouseX, mouseY);

};

mouseDragged = function() {

 bob.handleDrag(mouseX, mouseY);

};

mouseReleased = function() {

 bob.stopDragging();

};

