
Probability & non-uniform distributions 

Remember when you first started programming here? Perhaps you wanted 

to draw a lot of circles on the screen. So you said to yourself: “Oh, I know. 

I’ll draw all these circles at random locations, with random sizes and 

random colours.” In a computer graphics system, it’s often easiest to seed 

a system with randomness. In these lessons, however, we’re looking to 

build systems modelled on what we see in nature. Defaulting to 

randomness is not a particularly thoughtful solution to a design problem—

particularly the kind of problem that involves creating an organic or 

natural-looking simulation. 

With a few tricks, we can change the way we use random() to produce 

“non-uniform” distributions of random numbers. This will come in handy 

throughout this course as we look at a number of different scenarios. When 

we examine genetic algorithms, for example, we’ll need a methodology 

for performing “selection”—which members of our population should be 

selected to pass their DNA to the next generation? Remember the concept 

of survival of the fittest? Let’s say we have a population of monkeys 

evolving. Not every monkey will have an equal chance of reproducing. To 

simulate Darwinian evolution, we can’t simply pick two random monkeys 

to be parents. We need the more “fit” ones to be more likely to be chosen. 

We need to define the “probability of the fittest.” For example, a 

particularly fast and strong monkey might have a 90% chance of 

procreating, while a weaker one has only a 10% chance. 

Let’s pause here and take a look at probability’s basic principles. First 

we’ll examine single event probability, i.e. the likelihood that a given 

event will occur. 

If you have a system with a certain number of possible outcomes, the 

probability of the occurrence of a given event equals the number of 



outcomes that qualify as that event divided by the total number of all 

possible outcomes. A coin toss is a simple example—it has only two 

possible outcomes, heads or tails. There is only one way to flip heads. The 

probability that the coin will turn up heads, therefore, is one divided by 

two: 1/2 or 50%. 

Take a deck of fifty-two cards. The probability of drawing an ace from 

that deck is: 

number of aces / number of cards = 4 / 52 = 0.077 = ~ 8% 

The probability of drawing a diamond is: 

number of diamonds / number of cards = 13 / 52 = 0.25 = 25% 

We can also calculate the probability of multiple events occurring in 

sequence. To do this, we simply multiply the individual probabilities of 

each event. 

The probability of a coin turning up heads three times in a row is: 

(1/2) * (1/2) * (1/2) = 1/8 (or 0.125) 

…meaning that a coin will turn up heads three times in a row one out of 

eight times (each “time” being three tosses). 

Want to review probability before continuing? Study compound 

events and dependent probability. 

There are a couple of ways in which we can use the random() function with 

probability in code. One technique is to fill an array with a selection of 

numbers—some of which are repeated—then choose random numbers 

from that array and generate events based on those choices. 

Running this code will produce a 40% chance of printing the value 1, a 

20% chance of printing 2, and a 40% chance of printing 3. 



We can also ask for a random number (let’s make it simple and just 

consider random decimal values between 0 and 1) and allow an event to 

occur only if our random number is within a certain range. Check out the 

example below, and keep clicking restart until the randomly picked 

number is finally less than the threshold: 

This method can also be applied to multiple outcomes. Let’s say that 

Outcome A has a 60% chance of happening, Outcome B, a 10% chance, 

and Outcome C, a 30% chance. We implement this in code by picking a 

random number and seeing into what range it falls. 

 between 0.00 and 0.60 (60%) –> Outcome A 

 between 0.60 and 0.70 (10%) –> Outcome B 

 between 0.70 and 1.00 (30%) –> Outcome C__ 

 Click the restart button to see how often you get different outcomes: 

We could use the above methodology to create a random walker that tends 

to move to the right. Here is an example of a Walker with the following 

probabilities: 

 chance of moving up: 20% 

 chance of moving down: 20% 

 chance of moving left: 20% 

 chance of moving right: 40% 

 

 


