
Polar coordinates

Any time we display a shape in ProcessingJS, we have to specify a pixel

location, a set of x and y coordinates. These coordinates are known as

Cartesian coordinates, named for René Descartes, the French

mathematician who developed the ideas behind Cartesian space.

Another useful coordinate system known as polar coordinates describes a

point in space as an angle of rotation around the origin and a radius from

the origin. Thinking about this in terms of a vector:

 Cartesian coordinate—the x,y components of a vector

 Polar coordinate—the magnitude (length) and direction (angle) of a vector

However, the drawing functions in ProcessingJS don’t understand polar

coordinates. Whenever we want to display something in ProcessingJS, we

have to specify locations as (x,y) Cartesian coordinates. However,

sometimes it is a great deal more convenient for us to think in polar

coordinates when designing. Happily for us, with trigonometry we can

convert back and forth between polar and Cartesian, which allows us to

design with whatever coordinate system we have in mind but always draw

with Cartesian coordinates.

The Greek letter θ (theta) is often used to denote an angle, and a polar

coordinate is conventionally referred to as (r, θ) instead of (x, y). Thus,

when dealing with polar coordinates, we'll now use "theta" as the preferred

variable name for the angle.

<pre>**sine(theta) = y/r → y = r * sine(theta)

cosine(theta) = x/r → x = r * cosine(theta)** </pre>

For example, if r is 75 and theta is 45 degrees (or PI/4 radians), we can

calculate x and y as below. The functions for sine and cosine in

ProcessingJS are sin() and cos(), respectively. They each take one

argument, an angle measured in degrees.

var r = 75;

var theta = 45;

// Convert polar to cartesian

var x = r * cos(theta);

var y = r * sin(theta);

This type of conversion can be useful in certain applications. For example,

to move a shape along a circular path using Cartesian coordinates is not so

easy. With polar coordinates, on the other hand, it’s simple: increment the

angle!

Here's how we can make a simple rotating shape using polar coordinate

conversion:

// Convert a polar coordinate (r,theta)

// to cartesian (x,y):

// x = r * cos(theta)

// y = r * sin(theta)

var r = height * 0.40;

var theta = 0;

var draw = function() {

 background(255, 255, 255);

 // Translate the origin point to the center of the screen

 pushMatrix();

 translate(width/2, height/2);

 // Convert polar to cartesian

 var x = r * cos(theta);

 var y = r * sin(theta);

 // Draw the ellipse at the cartesian coordinate

 ellipseMode(CENTER);

 fill(127);

 stroke(0);

 strokeWeight(2);

 line(0, 0, x, y);

 ellipse(x, y, 48, 48);

 // Increase the angle over time

 theta += 1;

 popMatrix();

};

