
Pointing towards movement 

Let’s go all the way back to one of our first examples, the one where 

a Mover object accelerates towards the mouse. 

var Mover = function() { 

    this.position = new PVector(width/2, height/2); 

    this.velocity = new PVector(0, 0); 

    this.acceleration = new PVector(0, 0); 

}; 

 

Mover.prototype.update = function() { 

    var mouse = new PVector(mouseX, mouseY); 

    var dir = PVector.sub(mouse, this.position); 

    dir.normalize(); 

    dir.mult(0.5); 

    this.acceleration = dir; 

    this.velocity.add(this.acceleration); 

    this.velocity.limit(5); 

    this.position.add(this.velocity); 

}; 

 

Mover.prototype.display = function() { 

    stroke(0); 

    strokeWeight(2); 

    fill(127); 

    ellipse(this.position.x, this.position.y, 48, 48); 

}; 

 



Mover.prototype.checkEdges = function() { 

 

    if (this.position.x > width) { 

        this.position.x = 0; 

    } else if (this.position.x < 0) { 

        this.position.x = width; 

    } 

     

    if (this.position.y > height) { 

        this.position.y = 0; 

    } else if (this.position.y < 0) { 

        this.position.y = height; 

    } 

}; 

 

var mover = new Mover(); 

 

var draw = function() { 

    background(255, 255, 255); 

     

    mover.update(); 

    mover.checkEdges(); 

    mover.display();  

}; 

 

You might notice that almost all of the shapes we’ve been drawing so far 

are circles. This is convenient for a number of reasons, one of which is that 



we don’t have to consider the question of rotation. Rotate a circle and, 

well, it looks exactly the same. However, there comes a time in all motion 

programmers’ lives when they want to draw something on the screen that 

points in the direction of movement. Perhaps you are drawing an ant, or a 

car, or a spaceship. And when we say "point in the direction of 

movement," what we are really saying is “rotate according to the velocity 

vector.” Velocity is a vector, with an x and a y component, but to rotate in 

ProcessingJS we need an angle. Let’s draw our trigonometry diagram one 

more time, with an object’s velocity vector: 

 

OK. We know that the definition of tangent is: 

tangent(angle)=\frac{velocity_y}{velocity_x}tangent(angle)=

velocityxvelocityyt, a, n, g, e, n, t, left parenthesis, a, n, g, l, e, right 

parenthesis, equals, start fraction, v, e, l, o, c, i, t, y, start subscript, y, end 

subscript, divided by, v, e, l, o, c, i, t, y, start subscript, x, end subscript, 

end fraction 



The problem with the above is that we know velocity, but we don’t know 

the angle. We have to solve for the angle. This is where a special function 

known as inverse tangent comes in, sometimes referred to as arctangent or 

tan-1. (There is also an inverse sine and an inverse cosine.) 

If the tangent of some value a equals some value b, then the inverse 

tangent of b equals a. For example: 

| if | tangent(a) = b | | then | a = arctangent(b) | 

See how that is the inverse? The above now allows us to solve for the 

angle: 

| if | tangent(angle) = velocity_y / velocity_x | | then | angle = 

arctangent(velocity_y / velocity_x) | 

Now that we have the formula, let’s see where it should go in our mover’s 

display() function. Notice that in ProcessingJS, the function for arctangent 

is called atan(). JavaScript also provides Math.atan() natively (as well as all 

the basic trig functions), but we'll stick with the ProcessingJS provided 

functions. 

Mover.prototype.display = function () { 

  var angle = atan(this.velocity.y / this.velocity.x); 

 

  stroke(0, 0, 0); 

  fill(127, 127, 127); 

  pushMatrix(); 

  rectMode(CENTER); 

  translate(this.position.x, this.position.y); 

  rotate(angle); 

  rect(0, 0, 30, 10); 

  popMatrix(); 

}; 



Now the above code is pretty darn close, and almost works. We still have a 

big problem, though. Let’s consider the two velocity vectors depicted 

below. 

 

Though superficially similar, the two vectors point in quite different 

directions—opposite directions, in fact! However, if we were to apply our 

formula to solve for the angle to each vector… 

V1 ⇒ angle = atan(-4/3) = atan(-1.333...) = -0.9272952 radians = -53 

degrees 

V2 ⇒ angle = atan(4/-3) = atan(-1.333...) = -0.9272952 radians = -53 

degrees 

…we get the same angle for each vector. This can’t be right for both; the 

vectors point in opposite directions! The thing is, this is a pretty common 

problem in computer graphics. Rather than simply using atan() along with 

a bunch of conditional statements to account for positive/negative 

scenarios, ProcessingJS (along with JavaScript and pretty much all 

programming environments) has a nice function called atan2() that does it 

for you. 

Mover.prototype.display = function () { 

  var angle = atan2(this.velocity.y, this.velocity.x); 

 

  stroke(0, 0, 0); 

  fill(127, 127, 127); 

  pushMatrix(); 

  rectMode(CENTER); 

  translate(this.position.x, this.position.y); 



  rotate(angle); 

  rect(0, 0, 30, 10); 

  popMatrix(); 

}; 

 

To simplify this even further, the PVector object itself provides a function 

called heading(), which takes care of calling atan2() for you so you can get 

the 2D direction angle, in radians, for any PVector. 

Here's what the program looks like, all together. Move your mouse over it 

and see how it rotates! 

var Mover = function() { 

    this.position = new PVector(width/2, height/2); 

    this.velocity = new PVector(0, 0); 

    this.acceleration = 0; 

    this.topspeed = 4; 

    this.xoff = 1000; 

    this.yoff = 0; 

    this.r = 16; 

}; 

 

Mover.prototype.update = function () { 

    var mouse = new PVector(mouseX, mouseY); 

    var dir = PVector.sub(mouse, this.position); 

    dir.normalize(); 

    dir.mult(0.5); 

    this.acceleration = dir; 

     

    this.velocity.add(this.acceleration); 



    this.velocity.limit(this.topspeed); 

    this.position.add(this.velocity); 

}; 

 

Mover.prototype.display = function () { 

    var angle = this.velocity.heading(); 

     

    stroke(0, 0, 0); 

    strokeWeight(2); 

    fill(127, 127, 127); 

    pushMatrix(); 

    rectMode(CENTER); 

    translate(this.position.x, this.position.y); 

    rotate(angle); 

    rect(0, 0, 30, 10); 

    popMatrix(); 

}; 

 

Mover.prototype.checkEdges = function () { 

    if (this.position.x > width) { 

        this.position.x = 0; 

    } else if (this.position.x < 0) { 

        this.position.x = width; 

    } 

     

    if (this.position.y > height) { 

        this.position.y = 0; 



    } else if (this.position.y < 0) { 

        this.position.y = height; 

    } 

}; 

 

var mover = new Mover(); 

 

var draw = function() { 

    background(169, 230, 232); 

    mover.update(); 

    mover.checkEdges(); 

    mover.display(); 

}; 

 


