
Perlin noise 

A good random number generator produces numbers that have no 

relationship and show no discernible pattern. As we are beginning to see, a 

little bit of randomness can be a good thing when programming organic, 

lifelike behaviours. However, randomness as the single guiding principle 

is not necessarily natural. An algorithm known as “Perlin noise,” named 

for its inventor Ken Perlin, takes this concept into account. Perlin 

developed the noise function while working on the original Tron movie in 

the early 1980s; it was designed to create procedural textures for 

computer-generated effects. In 1997 Perlin won an Academy Award in 

technical achievement for this work. Perlin noise can be used to generate 

various effects with natural qualities, such as clouds, landscapes, and 

patterned textures like marble. 

Perlin noise has a more organic appearance because it produces a naturally 

ordered (“smooth”) sequence of pseudo-random numbers. The graph 

below shows Perlin noise over time, with the x-axis representing time; 

note the smoothness of the curve. 

 

Nature of Code Image 

Figure I.5: Noise 

Contrastingly, the next graph below shows pure random numbers over 

time. 



 

Nature of Code Image 

Figure I.6: Random 

ProcessingJS has a built-in implementation of the Perlin noise algorithm: 

the function noise(). The noise() function takes one, two, or three 

arguments, as noise is computed in one, two, or three dimensions. Let’s 

start by looking at one-dimensional noise. 

 


