
Particle types

Now we're going to use more advanced object-oriented programming

techniques like inheritance, so you may want to review "Inheritance" in the

Intro to JS course and come back. Don't worry, we'll wait!

Feeling good about how inheritance works? Good, because we're going to

use inheritance to make different types of Particle sub-objects, which

share much of the same functionality but also differ in key ways.

Let's review a simplified Particle implementation:

var Particle = function(position) {

 this.acceleration = new PVector(0, 0.05);

 this.velocity = new PVector(random(-1, 1), random(-1, 0));

 this.position = position.get();

};

Particle.prototype.run = function() {

 this.update();

 this.display();

};

Particle.prototype.update = function(){

 this.velocity.add(this.acceleration);

 this.position.add(this.velocity);

};

Particle.prototype.display = function() {

 fill(127, 127, 127);

 ellipse(this.position.x, this.position.y, 12, 12);

};

Next, we create a new object type based on Particle, which we'll call

Confetti. We'll start off with a constructor function that accepts the same

number as arguments, and simply calls the Particle constructor, passing

them along:

var Confetti = function(position) {

 Particle.call(this, position);

};

Now, in order to make sure that our Confetti objects share the same

methods as Particle objects, we need to specify that their prototype should

be based on the Particle prototype:

Confetti.prototype = Object.create(Particle.prototype);

Confetti.prototype.constructor = Confetti;

At this point, we have Confetti objects that act exactly the same way as

Particle objects. The point of inheritance isn't to make duplicates, it's to

make new objects that share a lot of functionality but also differ in some

way. So, how is a Confetti object different? Well, just based on the name,

it seems like it should look different. Our Particle objects are ellipses, but

confetti is usually little bits of square paper, so at the very least, we should

change the display method to show them as rectangles instead:

Confetti.prototype.display = function(){

 rectMode(CENTER);

 fill(0, 0, 255, this.timeToLive);

 stroke(0, 0, 0, this.timeToLive);

 strokeWeight(2);

 rect(0, 0, 12, 12);

};

Here's a program with one Particle object instance and one Confetti object

instance. Notice they behave similarly but differ in their appearance:

/* This program contains 2 objects:

 - Particle

 -- Confetti (sub-object of Particle)

 At the bottom, it creates a Particle and Confetti and animates them.

*/

/* The Particle object */

var Particle = function(position) {

 this.acceleration = new PVector(0, 0.05);

 this.velocity = new PVector(random(-1, 1), random(-1, 0));

 this.position = position.get();

};

Particle.prototype.run = function() {

 this.update();

 this.display();

};

Particle.prototype.update = function(){

 this.velocity.add(this.acceleration);

 this.position.add(this.velocity);

};

Particle.prototype.display = function() {

 stroke(0, 0, 0);

 strokeWeight(2);

 fill(255, 0, 0);

 ellipse(this.position.x, this.position.y, 12, 12);

};

/* The Confetti object */

var Confetti = function(position) {

 Particle.call(this, position);

};

Confetti.prototype = Object.create(Particle.prototype);

Confetti.prototype.constructor = Confetti;

Confetti.prototype.display = function(){

 rectMode(CENTER);

 fill(0, 0, 255);

 stroke(0, 0, 0);

 strokeWeight(2);

 rect(this.position.x, this.position.y, 12, 12);

};

var particle = new Particle(new PVector(width/2, 50));

var confetti = new Confetti(new PVector(width/2, 50));

draw = function() {

 background(168, 255, 156);

 particle.run();

 confetti.run();

};

