
Oscillation with angular velocity

An understanding of the concepts of oscillation, amplitude, and

frequency/period is often required in the course of simulating real-world

behaviours. However, there is a slightly easier way to rewrite the above

example with the same result. Let’s take one more look at our oscillation

formula:

var x = amplitude * sin(TWO_PI * frameCount / period);

And let’s rewrite it a slightly different way:

var x = amplitude * sin(some value that increments slowly);

If we care about precisely defining the period of oscillation in terms of

frames of animation, we might need the formula the way we first wrote it,

but we can just as easily rewrite our example using the concept of angular

velocity (and acceleration) from the Angular Motion lesson. Assuming:

var angle = 0;

var aVelocity = 0.03;

...in draw(), we can simply say:

angle += aVelocity;

var x = amplitude * sin(angle);

...where angle is our “some value that increments slowly.”

Here's our modified program:

angleMode = "radians";

var angle = 0;

var aVelocity = 0.03;

var draw = function() {

 background(255);

 var amplitude = 100;

 var x = amplitude * sin(angle);

 angle += aVelocity;

 resetMatrix();

 translate(width/2, height/2);

 stroke(0, 0, 0);

 fill(175, 175, 175);

 line(0, 0, x, 0);

 ellipse(x, 0, 20, 20);

};

Just because we’re not referencing it directly doesn’t mean that

we’ve eliminated the concept of period. After all, the greater the

angular velocity, the faster the circle will oscillate (therefore

lowering the period). In fact, the number of times it takes to add up

the angular velocity to get to TWO_PI is the period or:

period = TWO_PI / angular velocity

Let’s expand this example a bit more and create an Oscillator object. And

let’s assume we want the oscillation to happen along both the x-axis (as

above) and the y-axis. To do this, we’ll need two angles, two angular

velocities, and two amplitudes (one for each axis). Another perfect

opportunity for PVector!

Read through the code in the program below:

angleMode = "radians";

var Oscillator = function() {

 this.angle = new PVector();

 this.velocity = new PVector(random(-0.05, 0.05), random(-0.05, 0.05));

 this.amplitude = new PVector(random(20, width/2), random(20, height/2));

};

Oscillator.prototype.oscillate = function() {

 this.angle.add(this.velocity);

};

Oscillator.prototype.display = function() {

 var x = sin(this.angle.x) * this.amplitude.x;

 var y = sin(this.angle.y) * this.amplitude.y;

 pushMatrix();

 translate(width/2, height/2);

 stroke(0, 0, 0);

 strokeWeight(2);

 fill(127, 127, 127, 127);

 line(0, 0, x, y);

 ellipse(x, y, 32, 32);

 popMatrix();

};

var oscillators = [];

for (var i = 0; i < 10; i++) {

 oscillators.push(new Oscillator());

}

var draw = function() {

 background(255, 255, 255);

 for (var i = 0; i < oscillators.length; i++) {

 oscillators[i].oscillate();

 oscillators[i].display();

 }

};

