
Mutual attraction

Hopefully, you found it helpful that we started with a simple scenario—

one object attracts another object—and moved on to one object attracts

many objects. However, it’s likely that you are going to find yourself in a

slightly more complex situation: many objects attract each other. In other

words, every object in a given system attracts every other object in that

system (except for itself).

We’ve really done almost all of the work for this already. Let’s consider a

program with an array of Mover objects:

var movers = [];

for (var i = 0; i < movers.length; i++) {

 movers[i] = new Mover(random(0.1, 2), random(width), random(height));

}

draw = function() {

 background(255, 255, 255);

 for (var i = 0; i < movers.length; i++) {

 movers[i].update();

 movers[i].display();

 }

};

The draw() function is where we need to work some magic. Currently,

we’re saying: “for every mover i, update and display yourself.” Now what

we need to say is: “for every mover i, be attracted to every other mover j,

and update and display yourself.”

for (var i = 0; i < movers.length; i++) {

 // For every Mover, check every Mover!

 for (var j = 0; j < movers.length; j++) {

 var force = movers[j].calculateAttraction(movers[i]);

 movers[i].applyForce(force);

 }

 movers[i].update();

 movers[i].display();

}

In the previous example, we had an Attractor object with a method named

calculateAttraction(). Now, since we have movers attracting movers, all

we need to do is copy that method into the Mover object.

Mover.prototype.calculateAttraction = function(m) {

 var force = PVector.sub(this.position, m.position);

 var distance = force.mag();

 distance = constrain(distance, 5.0, 25.0);

 force.normalize();

 var strength = (G * this.mass * m.mass) / (distance * distance);

 force.mult(strength);

 return force;

};

Of course, there’s one small problem. When we are looking at every

mover i and every mover j, are we OK with the times that i equals j? For

example, should mover #3 attract mover #3? The answer, of course, is no.

If there are five objects, we only want mover #3 to attract 0, 1, 2, and 4,

skipping itself. We do, however, want to calculate and apply both the force

from mover #3 on mover #1, and mover #1 on mover #3. The

calculated forces will be the same for the pair, but the resulting

acceleration will be different, depending on the mass of each mover. Our

attraction table should look like:

0 ⇢ 1, 2, 3, 4

1 ⇢ 0, 2, 3, 4

2 ⇢ 0, 1, 3, 4

3 ⇢ 0, 1, 2, 4

And so, we finish this example by modifying our for loop so that the inner

loop avoids movers attracting themselves:

for (var i = 0; i < movers.length; i++) {

 for (var j = 0; j < movers.length; j++) {

 if (i !== j) {

 var force = movers[j].calculateAttraction(movers[i]);

 movers[i].applyForce(force);

 }

 }

 movers[i].update();

 movers[i].display();

}

Let's see it all together now:

var G = 1;

var Mover = function(m, x, y) {

 this.mass = m;

 this.position = new PVector(x, y);

 this.velocity = new PVector(0, 0);

 this.acceleration = new PVector(0, 0);

};

Mover.prototype.applyForce = function(force) {

 var f = PVector.div(force, this.mass);

 this.acceleration.add(f);

};

Mover.prototype.update = function() {

 this.velocity.add(this.acceleration);

 this.position.add(this.velocity);

 this.acceleration.mult(0);

};

Mover.prototype.display = function() {

 stroke(0);

 strokeWeight(2);

 fill(255, 255, 255, 127);

 ellipse(this.position.x, this.position.y, this.mass*16, this.mass*16);

};

Mover.prototype.calculateAttraction = function(m, i) {

 // Calculate direction of force

 var force = PVector.sub(this.position, m.position);

 // Distance between objects

 var distance = force.mag();

 // Limiting the distance to eliminate "extreme" results for very close or very far objects

 distance = constrain(distance, 5.0, 25.0);

 // Normalize vector (distance doesn't matter here, we just want this vector for direction

 force.normalize();

 // Calculate gravitional force magnitude

 var strength = (G * this.mass * m.mass) / (distance * distance);

 // Get force vector --> magnitude * direction

 force.mult(strength);

 return force;

};

var movers = [];

for (var i = 0; i < 5; i++) {

 movers[i] = new Mover(random(0.1, 5), random(width), random(height));

}

var draw = function() {

 background(50, 50, 50);

 for (var i = 0; i < movers.length; i++) {

 for (var j = 0; j < movers.length; j++) {

 if (i !== j) {

 var force = movers[j].calculateAttraction(movers[i]);

 movers[i].applyForce(force);

 }

 }

 movers[i].update();

 movers[i].display();

 }

};

