
Angles and units 

In the vectors and forces sections, we carefully worked out an object-

oriented structure to make something move on the screen, using the 

concept of a vector to represent location, velocity, and acceleration driven 

by forces in the environment. We could move straight from here into 

topics such as particle systems, steering forces, group behaviours, etc. If 

we did that, however, we’d skip an important area of mathematics that 

we’re going to need: trigonometry, or the mathematics of triangles, 

specifically right triangles. 

Trigonometry is going to give us a lot of tools. We’ll get to think about 

angles and angular velocity and acceleration. Trig will teach us about the 

sine and cosine functions, which when used properly can yield an nice 

ease-in, ease-out wave pattern. It’s going to allow us to calculate more 

complex forces in an environment that involves angles, such as a 

pendulum swinging or a box sliding down an incline. 

So this section is a bit of a mishmash. We’ll start with the basics of angles 

in ProcessingJS and cover many trigonometric topics, tying it all into 

forces at the end. And by taking this break now, we’ll also pave the way 

for more advanced examples that require trig later in this course. 

Angles 

 

OK. Before we can do any of this stuff, we need to make sure we 

understand what it means to be an angle in ProcessingJS. If you have 

experience with ProcessingJS, you’ve undoubtedly encountered this issue 

while using the rotate() function to rotate and spin objects. 

The first order of business is to cover radians and degrees. You’re 

probably most familiar with the concept of an angle in degrees. A full 



rotation goes from 0 to 360 degrees. 90 degrees (a right angle) is 1/4th of 

360, shown below as two perpendicular lines. 

 

It’s fairly intuitive for us to think of angles in terms of degrees. For 

example, the square in the diagram below is rotated 45 degrees around its 

centre. 

 

But sometimes we may find it better to specify our angles in radians. A 

radian is a unit of measurement for angles defined by the ratio of the 

length of the arc of a circle to the radius of that circle. One radian is the 

angle at which that ratio equals one (see the first diagram). 180 degrees = 

PI radians, 360 degrees = 2*PI radians, 90 degrees = PI/2 radians, etc. 



 

The formula to convert from degrees to radians is: 

radians = 2 * PI * (degrees / 

360)radians=2∗PI∗(degrees/360)r, a, d, i, a, n, s, equals, 2, times, P, 

I, times, left parenthesis, d, e, g, r, e, e, s, slash, 360, right parenthesis 

Thankfully, ProcessingJS makes it easy to decide which unit we want to 

use, radians or degrees, when using the functions that deal with angles, 

like sin()and atan(). In the Khan Academy environment, the default is 

degrees, but it can be changed to radians like so: 

angleMode = "radians"; 

In addition, ProcessingJS also provides functions to make it easy to switch 

between the two units. The radians() function will automatically convert 

values from degrees to radians, and the constants PI and TWO_PI provide 

convenient access to these commonly used numbers (equivalent to 180 and 

360 degrees, respectively). The following code, for example, will rotate 

shapes by 60 degrees. 

angleMode = "radians"; 

var angle = radians(60); 

rotate(angle); 

If you are not familiar with how rotation is implemented in ProcessingJS, 

you could try this tutorial: Processing - Transform 2D, but note there are 

some differences between Processing and ProcessingJS. 



<div class="callout"> 

What is PI? 

The mathematical constant pi (or π) is a real number defined as the ratio of 

a circle’s circumference (the distance around the perimeter) to its diameter 

(a straight line that passes through the circle’s centre and has endpoints on 

its perimeter). It is equal to approximately 3.14159 and can be accessed in 

ProcessingJS with the built-in variable PI. 

</div> 

 


