
Air and fluid resistance

Diagram of fluid resistance around a plane

Friction also occurs when a body passes through a liquid or gas. This force

has many different names, all really meaning the same thing: viscous

force, drag force, fluid resistance. While the result is ultimately the same

as our previous friction examples (the object slows down), the way in

which we calculate a drag force will be slightly different. Let’s look at the

formula:

Fd=−12ρv2ACdv^

Now let’s break this down and see what we really need for an effective

simulation in ProcessingJS, making ourselves a much simpler formula in

the process.

 F_dFdF, start subscript, d, end subscript refers to drag force, the vector

we ultimately want to compute and pass into our applyForce() function.

 -1/2 is a constant: -0.5. This is fairly irrelevant in terms of our

ProcessingJS world, as we will be making up values for other constants

anyway. However, the fact that it is negative is important, as it tells us that

the force is in the opposite direction of velocity (just as with friction).

 \rhoρrho is the Greek letter rho, and refers to the density of the liquid,

something we don’t need to worry about. We can simplify the problem and

consider this to have a constant value of 1.

 vvv refers to the speed of the object moving. OK, we’ve got this one! The

object’s speed is the magnitude of the velocity vector: velocity.mag().

And v^2v2v, start superscript, 2, end superscript just means vvv squared

or v * vv∗vv, times, v.

 AAA refers to the frontal area of the object that is pushing through the

liquid (or gas). An aerodynamic Lamborghini, for example, will

experience less air resistance than a boxy Volvo. Nevertheless, for a basic

simulation, we can consider our object to be spherical and ignore this

element.

 C_dCdC, start subscript, d, end subscript is the coefficient of drag,

exactly the same as the coefficient of friction (ρ). This is a constant we’ll

determine based on whether we want the drag force to be strong or weak.

 \hat{v}v^ Look familiar? It should. This refers to the velocity unit

vector, i.e. velocity.normalize(). Just like with friction, drag is a force that

points in the opposite direction of velocity.

Now that we’ve analysed each of these components and determined what

we need for a simple simulation, we can reduce our formula to:

Simplified formula: F_drag = ||v^2|| * c_d * v - 1

or:

// Part 1 of our formula (magnitude): v^2 * Cd

var c = 0.1;

var speed = v.mag();

var dragMagnitude = c * speed * speed;

// Part 2 of our formula (direction): v unit vector * -1

var drag = velocity.get();

drag.normalize();

drag.mult(-1);

// Magnitude and direction together!

drag.mult(dragMagnitude);

Let’s implement this force in our Mover object type with one addition.

When we wrote our friction example, the force of friction was always

present. Whenever an object was moving, friction would slow it down.

Here, let’s introduce an element to the environment—a “liquid” that

the Mover objects pass through. The Liquid object will be a rectangle and

will know about its location, width, height, and “coefficient of drag”—i.e.,

is it easy for objects to move through it (like air) or difficult (like

molasses)? In addition, it should include a function to draw itself on the

screen (and two more functions, which we’ll see in a moment).

var Liquid = function(x, y, w, h, c) {

 this.x = x;

 this.y = y;

 this.w = w;

 this.h = h;

 this.c = c;

};

Liquid.prototype.display = function() {

 noStroke();

 fill(50);

 rect(this.x, this.y, this.w, this.h);

};

The main program will now declare and initialize a new Liquid object

instance. Note the coefficient is low (0.1), otherwise the object would

come to a halt fairly quickly (which may someday be the effect you want).

var liquid = new Liquid(0, height/2, width, height/2, 0.1);

Now comes an interesting question: how do we get the Mover object to talk

to the Liquid object? In other words, we want to execute the following:

When a mover passes through a liquid it experiences a drag force.

…or in object-oriented speak (assuming we are looping through an array

of Mover objects with index i):

// Is the Mover in the liquid?

if (liquid.contains(movers[i])) {

 // Calculate drag force

 var dragForce = liquid.calculateDrag(movers[i]);

 // Apply drag force to Mover

 movers[i].applyForce(dragForce);

}

The above code tells us that we need to add two functions to the Liquid

object type: (1) a function that determines if a Mover object is inside the

Liquid object, and (2) a function that computes the drag force exerted on

the Mover object.

The first is easy; we can simply use a conditional statement to determine if

the location vector rests inside the rectangle defined by the liquid.

Liquid.prototype.contains = function(m) {

 var p = m.position;

 return p.x > this.x && p.x < this.x + this.w &&

 p.y > this.y && p.y < this.y + this.h;

};

The drag() function is a bit more complicated; however, we’ve written the

code for it already. This is simply an implementation of our formula. The

drag force is equal to the coefficient of drag multiplied by the speed of

the Mover squared in the opposite direction of velocity!

Liquid.prototype.calculateDrag = function(m) {

 // Magnitude is coefficient * speed squared

 var speed = m.velocity.mag();

 var dragMagnitude = this.c * speed * speed;

 // Direction is inverse of velocity

 var dragForce = m.velocity.get();

 dragForce.mult(-1);

 // Scale according to magnitude

 // dragForce.setMag(dragMagnitude);

 dragForce.normalize();

 dragForce.mult(dragMagnitude);

 return dragForce;

};

And with these two functions added to the Liquid object type, we’re ready

to put it all together into one program:

/* Forces (Gravity and Fluid Resistance) with Vectors

 * Demonstration of multiple force acting on bodies (Mover object)

 * Bodies experience gravity continuously

 * Bodies experience fluid resistance when in "water"

 */

var Liquid = function(x, y, w, h, c) {

 this.x = x;

 this.y = y;

 this.w = w;

 this.h = h;

 this.c = c;

};

// Is the Mover in the Liquid?

Liquid.prototype.contains = function(m) {

 var p = m.position;

 return p.x > this.x && p.x < this.x + this.w &&

 p.y > this.y && p.y < this.y + this.h;

};

// Calculate drag force

Liquid.prototype.calculateDrag = function(m) {

 // Magnitude is coefficient * speed squared

 var speed = m.velocity.mag();

 var dragMagnitude = this.c * speed * speed;

 // Direction is inverse of velocity

 var dragForce = m.velocity.get();

 dragForce.mult(-1);

 // Scale according to magnitude

 // dragForce.setMag(dragMagnitude);

 dragForce.normalize();

 dragForce.mult(dragMagnitude);

 return dragForce;

};

Liquid.prototype.display = function() {

 noStroke();

 fill(28, 120, 186);

 rect(this.x, this.y, this.w, this.h);

};

var Mover = function(m, x, y) {

 this.mass = m;

 this.position = new PVector(x, y);

 this.velocity = new PVector(0, 0);

 this.acceleration = new PVector(0, 0);

};

Mover.prototype.applyForce = function(force) {

 var f = PVector.div(force, this.mass);

 this.acceleration.add(f);

};

Mover.prototype.update = function() {

 this.velocity.add(this.acceleration);

 this.position.add(this.velocity);

 this.acceleration.mult(0);

};

Mover.prototype.display = function() {

 stroke(0, 0, 0);

 strokeWeight(2);

 fill(123, 217, 176);

 ellipse(this.position.x, this.position.y, this.mass*16, this.mass*16);

};

Mover.prototype.checkEdges = function() {

 if (this.position.x > width) {

 this.position.x = width;

 this.velocity.x *= -1;

 } else if (this.position.x < 0) {

 this.velocity.x *= -1;

 this.position.x = 0;

 }

 if (this.position.y > height) {

 this.velocity.y *= -1;

 this.position.y = height;

 }

};

// Moving bodies

var movers = [];

// Create liquid object

var liquid = new Liquid(0, height/2, width, height/2, 0.1);

var draw = function() {

 background(219, 253, 255);

 // Draw water

 liquid.display();

 for (var i = 0; i < movers.length; i++) {

 // Is the Mover in the liquid?

 if (liquid.contains(movers[i])) {

 // Calculate drag force

 var dragForce = liquid.calculateDrag(movers[i]);

 // Apply drag force to Mover

 movers[i].applyForce(dragForce);

 }

 // Gravity is scaled by mass here!

 var gravity = new PVector(0, 0.1*movers[i].mass);

 // Apply gravity

 movers[i].applyForce(gravity);

 // Update and display

 movers[i].update();

 movers[i].display();

 movers[i].checkEdges();

 }

 fill(0, 0, 0);

 text("click mouse to reset",10,30);

};

// Restart all the Mover objects randomly

var resetMovers = function() {

 for (var i = 0; i < 9; i++) {

 movers[i] = new Mover(random(0.5, 3), 20+i*width/9, 0);

 }

};

// Not working???

var mousePressed = function() {

 resetMovers();

};

resetMovers();

Running the program, you should notice that we are simulating balls

falling into water. The objects only slow down when crossing

through the gray area at the bottom of the window (representing the

liquid). You’ll also notice that the smaller objects slow down a great

deal more than the larger objects. Remember Newton’s second

law? A = F / M. Acceleration equals force divided by mass. A

massive object will accelerate less. A smaller object will accelerate

more. In this case, the acceleration we’re talking about is the

“slowing down” due to drag. The smaller objects will slow down at a

greater rate than the larger ones.

