
A single particle

Before we can create an entire ParticleSystem, we have to create an object

that will describe a single particle. The good news: we've done this

already. Our Mover object from the Forces section serves as the perfect

template. For us, a particle is an independent body that moves about the

screen. It has location, velocity, and acceleration, a constructor to initialize

those variables, and functions to display() itself and update() its location.

// A simple Particle object

var Particle = function(position) {

 this.acceleration = new PVector();

 this.velocity = new PVector();

 this.position = position.get();

};

Particle.prototype.update = function(){

 this.velocity.add(this.acceleration);

 this.position.add(this.velocity);

};

Particle.prototype.display = function() {

 stroke(0, 0, 0);

 fill(175, 175, 175);

 ellipse(this.position.x, this.position.y, 8, 8);

};

This is about as simple as a particle can get. From here, we could take our

particle in several directions. We could add an applyForce() method to

affect the particle’s behaviour (we’ll do precisely this in a future example).

We could add variables to describe colour and shape, or use image() to

draw the particle. For now, however, let’s focus on adding just one

additional detail: lifespan.

Typical particle systems involve something called an emitter. The emitter

is the source of the particles and controls the initial settings for the

particles, location, velocity, etc. An emitter might emit a single burst of

particles, or a continuous stream of particles, or both. The point is that for

a typical implementation such as this, a particle is born at the emitter but

does not live forever. If it were to live forever, our program would

eventually grind to a halt as the number of particles increased to an

unwieldy number over time. As new particles are born, we need old

particles to die. This creates the illusion of an infinite stream of particles,

and the performance of our program does not suffer.

There are many different ways to decide when a particle dies. For

example, it could come into contact with another object, or it could simply

leave the screen. For our first Particle object, however, we’re simply going

to add a timeToLive property. It will act as a timer, counting down from 255

to 0, at which point we'll consider the particle to be "dead." And so we

expand the Particle object as follows:

// A simple Particle object

var Particle = function(position) {

 this.acceleration = new PVector();

 this.velocity = new PVector();

 this.position = position.get();

 this.timeToLive = 255;

};

Particle.prototype.update = function(){

 this.velocity.add(this.acceleration);

 this.position.add(this.velocity);

 this.timeToLive -= 2;

};

Particle.prototype.display = function() {

 stroke(255, 255, 255, this.timeToLive);

 fill(127, 127, 127, this.timeToLive);

 ellipse(this.position.x, this.position.y, 8, 8);

};

The reason we chose to start the timeToLive at 255 and count down to 0 is

for convenience. With those values, we can use timeToLive as the alpha

transparency for the ellipse as well. When the particle is “dead” it will also

have faded away onscreen.

With the addition of the timeToLive property, we’ll also need one additional

method—a function that can be queried (for a true or false answer) as to

whether the particle is alive or dead. This will come in handy when we are

writing the ParticleSystem object, whose task will be to manage the list of

particles themselves. Writing this function is pretty easy; we just need to

check and see if the value of timeToLive is less than 0. If it is we return true,

if not we return false.

Particle.prototype.isDead = function() {

 if (this.timeToLive < 0) {

 return true;

 } else {

 return false;

 }

};

Before we get to the next step of making many particles, it’s worth taking

a moment to make sure our particle works correctly and create a sketch

with one single Particle object. Here is the full code below, with two small

additions. We add a convenience method called run() that simply calls

both update() and display() for us. In addition, we give the particle a

random initial velocity as well as a downward acceleration (to simulate

gravity).

// A single Particle object

var Particle = function(position) {

 this.acceleration = new PVector(0, 0.05);

 this.velocity = new PVector(random(-1, 1), random(-1, 0));

 this.position = position.get();

 this.timeToLive = 255.0;

};

Particle.prototype.run = function() {

 this.update();

 this.display();

};

Particle.prototype.update = function(){

 this.velocity.add(this.acceleration);

 this.position.add(this.velocity);

 this.timeToLive -= 2;

};

Particle.prototype.display = function() {

 stroke(255, 255, 255, this.timeToLive);

 strokeWeight(2);

 fill(127, 127, 127, this.timeToLive);

 ellipse(this.position.x, this.position.y, 12, 12);

};

// Is the particle still useful?

Particle.prototype.isDead = function() {

 if (this.timeToLive < 0) {

 return true;

 } else {

 return false;

 }

};

var particle = new Particle(new PVector(width/2, 20));

var draw = function() {

 background(0, 116, 194);

 particle.run();

 if (particle.isDead()) {

 particle = new Particle(new PVector(width/2, 20));

 }

};

Now that we have an object to describe a single particle, we’re

ready for the next big step. How do we keep track of many particles,

when we can’t ensure exactly how many particles we might have at

any given time?

