Which JS library should you use?

There are a huge number of libraries out there, and for any given bit of functionality, there
are likely multiple libraries that accomplish that bit of functionality. For example, there are so
many date-picker libraries out there, that there are articles like "Top 15 jQuery DatePickers"
to try to help developers pick from them.

But too many choices can turn into decision paralysis for us web developers. How do we
know which one is best? What if we make the wrong choice?

There's often not a single "best choice" in web development. But there are often better
choices than others, and thinking through the considerations below can help you make the
better choice.

Since a JS library is often used when developing a user-facing product, these considerations
should satisfy two audiences: the developers that must code and maintain the code that uses
the library (like you!), and the users that will interact with it.

Will it be a good developer experience?

e Well documented: It should be easy to find a reference of function signatures, demos
of actual usage, and a more narrative how-to-use guide. If a library has no
documentation, it's usually a sign that they are not the most developer-friendly.

o Flexible: The demos in the documentation might look great - but might want to use a
library in a slightly or completely different way than what the demos show. Look for
signs of flexibility - Is it easy to send in configuration options? Is there a documented
plugin architecture? Does it trigger many events that you could hook your code into?

o Responsive community: You will have questions. You will encounter bugs. Ideally,
you'll be able to figure them out with developers, whether that's the maintainers or
users. If the library is hosted on a version control site like Github, you can look at:

o -- Number of forks: Lots of forks (or stars) means there are at least a lot of
developers that cared enough to fork the library. That doesn't mean they'll help
you, but it's a start! Large libraries often have thousands of forks, more niche
libraries have 100s or 10s of forks.

o -- Number of issues: Are there many open issues? That might be a sign that
there's not a community effort around responding and closing issues. It can
also mean it's just a very popular project with a lot of ideas for improvement,
S0 continue on to the next point.

o --Vibe on issues: Read through a few issues and pull requests. Are the
maintainers receptive to feedback? Do they answer usage questions? Do you
get a positive or negative vibe from the conversations on them?

o -- External community: Are questions about the library answered on
StackOverflow? Are there libraries that build on top of the library? Many
smaller libraries won't be big enough to have a visible external community,
but bigger ones like Modernizr or Backbone have significant ones, and that's a
big motivation for using them. You can do a search on the internet for the
library name to see what kind of results you find.


http://www.smashingapps.com/2012/01/19/15-jquery-calendar-date-picker-plugins.html

o Actively maintained: Browsers change frequently. Libraries that once worked can
suddenly stop working, because they relied on some quirk of the browser that
changed. This is specially true of HTML5 shims and polyfills, because browsers are
frequently releasing new versions with evolving implementations of the HTML5
elements. Check the date of the most recent commit.

o Future thinking: If you're looking for an HTMLS5 "shim", prefer a "polyfill" - a shim
that mimics the API. That way, theoretically, when all your users were using browsers
that supported the technology, you'd be able to stop using the library entirely, with no
change to your code at all. For example, if you're using a library to use video in your
webpage, use a polyfill that will let you use the HTML5 video tag, and it will replace
it with a fallback technology like Flash in older browsers.

o Tested: All good libraries should include tests that make sure their functionality
works as expected. When a library is tested, then we can have confidence there will
be some degree of backwards compatibility in new versions of the library.

o Clean code: We could treat open-source libraries as black boxes, and refuse to look
inside of them, but sometimes, you may need to dig inside of the library code to
debug an issue or add a new bit of functionality. Take a quick look at the code and see
how easy it is to read, and if it has any red flags, like big chunks of commented-out
lines of code.

Will it be a good user experience?
If the JS library does not create a Ul component, then only the first few of these matter.

o File size: How much will it contribute to how much JS your users have to download?
For context, jQuery gzipped and minified is 18k and Select2 is 7K.

o Performance: Besides size, other aspects of a JS library can affect its performance,
like if it does heavy DOM manipulation, graphics rendering, computation,
synchronous storage calls, etc. Look for promises of great performance on the
documentation, and of course, try it out yourself.

o Browser support: Check that it supports all your desired browsers. Many libraries
these days purposefully don't support older browsers (which your webpage may need
to support), because they're designed to be lightweight and only for mobile browsers.

o Accessibility: Many libraries for Ul components look great, but they are not
accessible (they do not work well for users with visual disabilities). For a quick check,
you can run WAVE on the library's demos page.

« Responsive: If your users will ever use the Ul component from a library on a mobile
browser, then it should work well for them there. Are the buttons big enough? Does it
use touch events? Does it scale to small screen sizes?

If you've considered all that criteria, and still can't decide between a handful of libraries, then
you might try the call-a-friend approach: ask colleagues or developer friends what library
they use. You might just find a crowd favorite.

Remember: there isn't one right answer, there isn't one best choice. Also, you don't have to
comprehensively review every JS library you are thinking about using, especially if you're
working on projects for your own. You can just pick a library and see what you like about it
while you use it. You'll start to build a list in your head of your favorite libraries to use, and
your own criteria for libraries, and that will help you in your future decisions.


https://github.com/Modernizr/Modernizr/wiki/HTML5-Cross-Browser-Polyfills
http://wave.webaim.org/

	Which JS library should you use?
	Will it be a good developer experience?
	Will it be a good user experience?


