
Summary DOM access methods

Hide tutorial navigation

What methods can we use?

We showed how you can use the following methods to find an element or elements in your

webpage:

 document.getElementById(id)
 document.getElementsByClassName(className)
 document.getElementsByTagName(tagName)
 document.querySelector(cssSelector)
 document.querySelectorAll(cssSelector)

What do they return?

There are two methods that return a single Element object, getElementById and

querySelector:

var salsMotto = document.getElementById("salsMotto");

salsMotto.innerHTML = "Math is cool";

The methods getElementsByClassName and getElementsByTagName return an

HTMLCollection object that acts like an array. That collection is "live", which means the

collection is updated if additional elements with tag name or class name are added to the

document.

var teamMembers = document.getElementsByClassName("team-member");

for (var i = 0; i < teamMembers.length; i++) {

 console.log(teamMembers[i].innerHTML);

}

The method querySelectorAll() returns a NodeList, which also acts like an array. That list

is "static", which means that the list won't update even if new matching elements are added to

the page. Most likely, you won't run into the difference between the two return data types

when you're using these methods, but it's good to keep in mind.

var teamMembers = document.querySelectorAll(".team-member");

for (var i = 0; i < teamMembers.length; i++) {

 console.log(teamMembers[i].innerHTML);

}

Accessing with sub-queries

Once you've found an element, you can do subqueries on it using the methods we've just

shown. For example:

// find the element with that ID

var salsMotto = document.getElementById("salsMotto");

// find the spans inside that element:

var mottoWords = salsMotto.getElementsByTagName("span");

https://developer.mozilla.org/en-US/docs/Web/API/document.getElementById
https://developer.mozilla.org/en-US/docs/Web/API/document.getElementsByClassName
https://developer.mozilla.org/en-US/docs/Web/API/document.getElementsByTagName
https://developer.mozilla.org/en-US/docs/Web/API/document.querySelector
https://developer.mozilla.org/en-US/docs/Web/API/document.querySelectorAll
https://developer.mozilla.org/en-US/docs/Web/API/Element
https://developer.mozilla.org/en-US/docs/Web/API/HTMLCollection
https://developer.mozilla.org/en-US/docs/Web/API/NodeList

// log out how many there are

console.log(mottoWords.length);

Traversing the DOM

Another way to access elements is to "traverse" the DOM tree. Each element has properties

that point to elements related to it:

 firstElementChild
 lastElementChild
 nextElementChild/nextElementSibling
 previousElementChild/previousElementSibling
 childNodes
 childElementCount

For example:

var salsMotto = document.getElementById("salsMotto");

for (var i = 0; i < salsMotto.childNodes.length; i++) {

 console.log(salsMotto.childNodes[i]);

}

These properties are not available on Text nodes, only on Element nodes. To make sure you

can traverse an element, you can check its nodeType/nodeValue properties. You likely will

not need or want to use DOM traversal, but it is another option available to you.

	Summary DOM access methods
	What methods can we use?
	What do they return?
	Accessing with sub-queries
	Traversing the DOM

