Calculations in Chemistry

AS 91164 Demonstrate understanding of bonding, structure, properties & energy changes	AS 91166 Demonstrate understanding of chemical reactivity	
 exothermic and endothermic reactions including energy (enthalpy) changes associated with differing amounts of substances and changes of state enthalpy changes associated with the making and breaking of chemical bonds calculations of energy changes using Δ_rH and reaction stoichiometry, and bond enthalpy. 	 the equilibrium constant (K_c) for homogeneous systems; This may involve calculations (If K_c ↑ eqm position shifts to right, favours the products as bigger [products] ÷ smaller [reactants] = bigger value of K_c. calculations involving Kw and pH (restricted to strong acids and bases). 	

Useful formulae you need to memorise

$$pH = - \log [H_3O^+]$$

$$[H_3O^+] = 10^{-pH} \text{ or inv log } (-pH)$$

$$K_W = 1 \times 10^{-14} = [H_3O^+][OH^-]$$

n = m/M or m = nM (n is amount, in mol, m is mass in g, & M is molar mass, in g mol⁻¹

n=cV (n is amount, in mol, c is concⁿ in mol L⁻¹ and V is volume in L

 $\Delta H = \Sigma \Delta H(bonds\ broken) + \Sigma \Delta H(bonds\ made)$ - This basically means that you add up all the energies of the broken bonds (+); add up all the energies of the bonds that are reformed (-) and add them to each other. You will be given the bond energies but you MUST remember that bond breaking is endothermic (+ ΔH) and bond making is exothermic (- ΔH) E.g. H-H \rightarrow H + H; +436 kJ while H + H \rightarrow H₂; -436 kJ

Units commonly used

- Energy: J or kJ or J mol⁻¹ or kJ mol⁻¹ For enthalpy changes the units of kJ mol⁻¹ refer to **one mole of the equation as written** rather than with respect to any particular component of the equation.
- Amount of substance: mol (1 mole = 6×10^{23} particles; atoms, molecules, or ions etc.).
- Concentration: mol L⁻¹; [......] square brackets mean concentration of
- Mass of substance: g or kg
- pH: has NO units
- K_c: has NO units (@ Level 2)

91164

Sample calculations

91166

The complete combustion of propane can be represented by the following equation

or we could redraw it to represent the bonds present:

Bond	Average bond	
type	enthalpy	
	kJ mol ⁻¹	
C-H	413	
C-C	347	
0=0	498	
C=O	805	
О-Н	464	

<u>Break</u>	<u>Make</u>	
2x C-C 2x 347	6x C=O 6x -498	
8x C-H 8x 413	8x O-H 8x -464	
5x 0=0 5x 498	= -8542 kJ	
= 6488 kJ		
ΔH = 6488 + - 8542 = -2054 kJ		

Remember "make" is exothermic so -

Calculate the amount of energy released when 25.0 grams of $C_4H_{10}(I)$ is burned in oxygen using the equation provided.

Method 1

1145.5 kJ of heat would be released.

Method 2

 $2C_4H_{10}$ (I) + $13O_2$ (g) \rightarrow $8CO_2$ (g) + $10H_2O$ (g); ΔH = -5315 kJ M(C_4H_{10}) = 58.0 g mol $^{-1}$ n(C_4H_{10}) = m/M = 25.0/58.0 = 0.431 mol If combustion of 2 mol of C_4H_{10} releases 5315 kJ of energy, then the combustion of 0.431 mol of C_4H_{10} releases (0.431/2) x 5315 = 1145.5 kJ (calculated keeping all numbers in calculator and rounding only final answer).

Determine the $[H_3O^+]$, $[OH^-]$ and pH in each of the following solutions.

- (a) 0.00112 mol L⁻¹ HCl solution.
- (b) 3.68×10^{-2} mol L⁻¹ NaOH solution.

2 values don't need calculating at all...... HCl is a strong acid, reacts completely with water; HCl + H₂O \rightarrow H₃O⁺ + Cl⁻ so [H₃O⁺] = [HCl] NaOH is a strong base, dissolves completely in water; NaOH + aq \rightarrow Na⁺ + OH⁻ so [OH⁻] = [NaOH]

	[H ₃ O ⁺]	[OH ⁻]	рН
(a)	0.00112		
(b)		3.68×10^{-2}	

	[H ₃ O ⁺]	[OH ⁻]	рН
(a)		$[OH^{-}] = 10^{-14}/[H_3O^{+}]$	$pH = -log [H_3O^{\dagger}]$
. ,	0.00112	$= 10^{-14} / 0.00112$	pH = -log 0.00112
		$= 8.93 \times 10^{-12}$	= 2.95
(b)	$[H_3O^+] = 10^{-14}/[OH^-]$		$pH = -log [H_3O^{\dagger}]$
\ \ /	$[H_3O^{\dagger}] = 10^{-14}/3.68 \times 10^{-2}$	3.68×10^{-2}	pH = -log
	$= 2.72 \times 10^{13}$		= 12.6

Do a quick reality check... yes... an acid with pH of 2.95 and a base with pH of 12.6 sounds fine! ©

Equilibrium constant (Kc) for homogeneous systems may involve calculations.

e.g. For the reaction:
$$H_2(g) + I_2(g) \rightleftharpoons 2HI(g)$$

$$K_c = \frac{[HI]^2}{[H_2][I_2]}$$

A mixture of hydrogen and iodine was heated in a sealed flask at 491° C and, at equilibrium, the concentration of hydrogen was 2.50×10^{-2} mol L⁻¹, iodine was 2.50×10^{-2} mol L⁻¹, and hydrogen iodide was 1.71×10^{-1} mol L⁻¹. Calculate K_c.

$$K_c = \frac{(1.71 \times 10^{-1})^2}{(2.50 \times 10^{-2}) \times (2.50 \times 10^{-2})} = 46.8 \text{ (no units)}$$