Calculations in Chemistry

AS 91164 Demonstrate understanding of bonding, structure, properties \& energy changes

- exothermic and endothermic reactions including energy (enthalpy) changes associated with differing amounts of substances and changes of state
- enthalpy changes associated with the making and breaking of chemical bonds
- calculations of energy changes using $\Delta_{\mathrm{r}} \mathrm{H}$ and reaction stoichiometry, and bond enthalpy.

Useful formulae you need to memorise

$$
\mathrm{pH}=-\log \left[\mathrm{H}_{3} \mathrm{O}^{+}\right] \quad\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=10^{-p H} \text { or inv } \log (-\mathrm{pH}) \quad \mathrm{K}_{w}=1 \times 10^{-14}=\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{OH}^{-}\right]
$$

$n=m / M$ or $m=n M$ (n is amount, in mol, m is mass in $g, \& M$ is molar mass,
$n=c V$ (n is amount, in mol, c is conc c^{n} in mol^{-1} and V is volume in L

$\Delta H=\Sigma \Delta H$ (bonds broken) $+\Sigma \Delta H$ (bonds made) - This basically means that you add up all the energies of the broken bonds (+); add up all the energies of the bonds that are reformed $(-)$ and add them to each other. You will be given the bond energies but you MUST remember that bond breaking is endothermic $(+\Delta H)$ and bond making is exothermic $(-\Delta H)$ E.g. $\mathrm{H}-\mathrm{H} \rightarrow \mathrm{H}+\mathrm{H} ;+436 \mathrm{~kJ}$ while $\mathrm{H}+\mathrm{H} \rightarrow \mathrm{H}_{2}$; -436 kJ

Units commonly used

- Energy: J or kJ or J mol ${ }^{-1}$ or $\mathrm{kJ} \mathrm{mol}^{-1}$ For enthalpy changes the units of $\mathrm{kJ} \mathrm{mol}^{-1}$ refer to one mole of the equation as written rather than with respect to any particular component of the equation.
- Amount of substance: mol (1 mole $=6 \times 10^{23}$ particles; atoms, molecules, or ions etc.).
- Concentration: $\mathrm{mol} \mathrm{L}^{-1}$; [......] - square brackets mean concentration of
- Mass of substance: g or kg
- pH: has NO units
- K_{c} : has NO units (@ Level 2)

The complete combustion of propane can be represented by the following equation

$$
\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{3}+5 \mathrm{O}_{2} \rightarrow 3 \mathrm{CO}_{2}+4 \mathrm{H}_{2} \mathrm{O}
$$

or we could redraw it to represent the bonds present:

Bond type	Average bond enthalpy kJ mol $^{-1}$
$\mathrm{C}-\mathrm{H}$	413
$\mathrm{C}-\mathrm{C}$	347
$\mathrm{O}=\mathrm{O}$	498
$\mathrm{C}=\mathrm{O}$	805
$\mathrm{O}-\mathrm{H}$	464

Break	Make
$2 \times C-C 2 \times 347$	$6 \times C=06 \times-498$
$8 \times C-H 8 \times 413$	$8 \times 0-H 8 \times-464$
$5 \times O=05 \times 498$	$=-8542 \mathrm{~kJ}$
$=6488 \mathrm{~kJ}$	
$\Delta H=6488+-8542=-2054 \mathrm{~kJ}$	

Remember "make" is exothermic so-
Calculate the amount of energy released when 25.0 grams of $\mathrm{C}_{4} \mathrm{H}_{10}(\mathrm{I})$ is burned in oxygen using the equation provided.
Method 1

$$
\begin{aligned}
& 2 \mathrm{C}_{4} \mathrm{H}_{10}(\mathrm{I})+13 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 8 \mathrm{CO}_{2}(\mathrm{~g})+10 \mathrm{H}_{2} \mathrm{O}(\mathrm{~g}) ; \Delta \mathrm{H}=-5315 \mathrm{~kJ}
\end{aligned}
$$

1145.5 kJ of heat would be released.

Method 2
$2 \mathrm{C}_{4} \mathrm{H}_{10}(\mathrm{I})+13 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 8 \mathrm{CO}_{2}(\mathrm{~g})+10 \mathrm{H}_{2} \mathrm{O}(\mathrm{g}) ; \Delta \mathrm{H}=-5315 \mathrm{~kJ}$
$\mathrm{M}\left(\mathrm{C}_{4} \mathrm{H}_{10}\right)=58.0 \mathrm{~g} \mathrm{~mol}^{-1} \quad \mathrm{n}\left(\mathrm{C}_{4} \mathrm{H}_{10}\right)=\mathrm{m} / \mathrm{M}=25.0 / 58.0=0.431 \mathrm{~mol}$
If combustion of 2 mol of $\mathrm{C}_{4} \mathrm{H}_{10}$ releases 5315 kJ of energy,
then the combustion of 0.431 mol of $\mathrm{C}_{4} \mathrm{H}_{10}$ releases $(0.431 / 2) \times 5315$
$=1145.5 \mathrm{~kJ}$ (calculated keeping all numbers in calculator and rounding only final answer).

Determine the $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right],\left[\mathrm{OH}^{-}\right]$and pH in each of the following solutions.
(a) $0.00112 \mathrm{~mol} \mathrm{~L}^{-1} \mathrm{HCl}$ solution.
(b) $3.68 \times 10^{-2} \mathrm{~mol} \mathrm{~L}^{-1} \mathrm{NaOH}$ solution.

2 values don't need calculating at all....... HCl is a strong acid, reacts completely with water; $\mathrm{HCl}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{Cl}^{-}$so $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=[\mathrm{HCl}]$ NaOH is a strong base, dissolves completely in water;
$\mathrm{NaOH}+\mathrm{aq} \rightarrow \mathrm{Na}^{+}+\mathrm{OH}^{-}$so $\left[\mathrm{OH}^{-}\right]=[\mathrm{NaOH}]$

	$\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$	$\left[\mathrm{OH}^{-}\right]$	pH
(a)	0.00112		
(b)		3.68×10^{-2}	

	$\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$	$\left[\mathrm{OH}^{-}\right]$	pH
(a)	0.00112	$\left[\mathrm{OH}^{-}\right]=10^{-14} /\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$ $=10^{-14} / 0.00112$ $=8.93 \times 10^{-12}$	$\mathrm{pH}=-\log \left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$ $\mathrm{pH}=-\log 0.00112$ $=2.95$
(b)$\left[\begin{array}{l}{\left[\mathrm{H}^{\circ} \mathrm{O}^{+}\right]=10^{-14} /[\mathrm{OH}]} \\ {\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=10^{-14} / 3.68 \times 10^{-2}} \\ =2.72 \times 10^{13}\end{array}\right.$ 3.68×10^{-2}	$\mathrm{pH}=-\log \left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$ $\mathrm{pH}=-\log$ $=12.6$		

Do a quick reality check... yes... an acid with pH of 2.95 and a base with pH of 12.6 sounds fine! :)

Equilibrium constant (Kc) for homogeneous systems may involve calculations.
e.g. For the reaction: $\mathrm{H}_{2}(\mathrm{~g})+\mathrm{I}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{HI}(\mathrm{g})$

$$
\mathrm{K}_{\mathrm{c}}=\frac{[\mathrm{HI}]^{2}}{\left[\mathrm{H}_{2}\right]\left[\mathrm{I}_{2}\right]}
$$

A mixture of hydrogen and iodine was heated in a sealed flask at $491^{\circ} \mathrm{C}$ and, at equilibrium, the concentration of hydrogen was $2.50 \times 10^{-2} \mathrm{~mol} \mathrm{~L}^{-1}$, iodine was $2.50 \times 10^{-2} \mathrm{~mol} \mathrm{~L}^{-1}$, and hydrogen iodide was $1.71 \times 10^{-1} \mathrm{~mol} \mathrm{~L}^{-1}$. Calculate K_{c}.
$\mathrm{K}_{\mathrm{c}}=\frac{\left(1.71 \times 10^{-1}\right)^{2}}{\left(2.50 \times 10^{-2}\right) \times\left(2.50 \times 10^{-2}\right)}=46.8$ (no units)

