$$
\begin{gathered}
\mathrm{pH}=-\log \left[\mathrm{H}_{3} \mathrm{O}^{+}\right] \\
{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=10^{-\mathrm{pH}}} \\
\mathrm{pOH}=-\log \left[\mathrm{OH}^{-}\right] \\
{\left[\mathrm{OH}^{-}\right]=10^{-\mathrm{pOH}}} \\
\mathrm{~K} \mathrm{~K}_{\mathrm{w}}=\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{OH}^{-}\right]=10^{-14} \\
\text { 10-14 }
\end{gathered}
$$

Enter 1.35×10^{-4} into calculator as

$$
\begin{aligned}
& 1.35 \operatorname{EXP}(-) 4 \text { OR } \\
& 1.35 \times 10^{\wedge}(-) 4
\end{aligned}
$$

Level 2 stuff revisited

Weak acids

$$
\mathrm{Ka}=\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]^{2} /[\mathrm{HA}]
$$

or

Equations for calculating pH of weak acids and bases

$$
\begin{gathered}
\mathrm{pH}+\mathrm{pOH}=14 \\
\mathrm{pKa}+\mathrm{pKb}=\mathrm{pKw}=14 \\
\mathrm{KaxKb}=\mathrm{Kw}=10^{-14} \\
\mathrm{Kw}=\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{OH}^{-}\right]=10^{-14} \\
\mathrm{pKw}=\mathrm{pH}+\mathrm{pOH}=14 \\
\mathrm{pKa}=-\log \mathrm{Ka} \\
\mathrm{pKb}=-\log \mathrm{Kb} \\
\mathrm{pKw}=-\log \mathrm{Kw}
\end{gathered}
$$

$$
\begin{aligned}
& \mathrm{Ka}=10^{-\mathrm{pKa}} \\
& \mathrm{~Kb}=10^{-\mathrm{pKb}} \\
& \mathrm{Kw}=10^{-\mathrm{pKw}}
\end{aligned}
$$

Weak bases
$\mathrm{Kb}=\left[\mathrm{OH}^{-}\right]^{2} /[\mathrm{B}]$
or
$\left[\mathrm{OH}^{-}\right]=\sqrt{\mathrm{Kb} \times[\mathrm{B}]}$
路

Converting things when you need something you weren't given

Equations for calculating pH of salts that are weakly acidic / basic

$$
\mathrm{pH}=\mathrm{pKa}+\log \frac{[\text { base }]}{[\text { acid }]}
$$

Note: when [base] = [acid]. then $\mathrm{pH}=\mathrm{pKa}$

\mathbf{Z} Remember this! \mathbf{C}

The base is the one WITHOUT the proton and the acid is the one WITH the proton!
poa

Buffer made from $\mathrm{CH}_{3} \mathrm{COOH}$ and $\mathrm{CH}_{3} \mathrm{COONa}$

$\mathrm{CH}_{3} \mathrm{COONa}$ dissolves completely in water into $\mathrm{CH}_{3} \mathrm{COO}^{-}(\mathrm{aq})$ and Na^{+}(aq) $\mathrm{CH}_{3} \mathrm{COONa}+\mathrm{aq} \rightarrow \mathrm{CH}_{3} \mathrm{COO}^{-}+\mathrm{Na}^{+}$

$$
\mathrm{pH}=\mathrm{pKa}+\log \frac{\left[\mathrm{CH}_{3} \mathrm{COO}^{-}\right]}{\left[\mathrm{CH}_{3} \mathrm{COOH}\right]}
$$

pKa ($\mathrm{CH}_{3} \mathrm{COOH}$) will be used in cale.
Alter $\left[\mathrm{CH}_{3} \mathrm{COO}^{-}\right]$: $\left[\mathrm{CH}_{3} \mathrm{COOH}\right]$ ratio to adjust the pH

Acidic buffer example

Strong acid: $\mathrm{HA}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{A}^{-}$ Weak acid: $\mathrm{HA}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{A}^{-}$

Strong base: $\mathrm{NaOH}+$ aq $\rightarrow \mathrm{Na}^{+}+\mathrm{OH}^{-}$ Weak base: $\mathrm{NH}_{3}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{NH}_{4}^{+}+\mathrm{OH}^{-}$

Neutral salt: $\mathrm{NaCl}+\mathrm{aq} \rightarrow \mathrm{Na}^{+}(\mathrm{aq})+\mathrm{Cl}^{-}(\mathrm{aq})$
Acidic salt: $\mathrm{NH}_{4} \mathrm{Cl}+\mathrm{aq} \rightarrow \mathrm{NH}_{4}^{+}+\mathrm{Cl}^{-}$ then $\mathrm{NH}_{4}^{+}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{NH}_{3}+\mathrm{H}_{3} \mathrm{O}^{+}$

Basic salt:
$\mathrm{CH}_{3} \mathrm{COONa}+$ aq $\rightarrow \mathrm{CH}_{3} \mathrm{COO}^{-}+\mathrm{Na}^{+}$ then $\mathrm{CH}_{3} \mathrm{COO}^{-}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{CH}_{3} \mathrm{COOH}+\mathrm{OH}^{-}$
(write + aq instead of $+\mathrm{H}_{2} \mathrm{O}$ if dissolving)
Equations for acids, bases and salts in water

