Demonstrate Understanding of Chemical reactivity			
ACIDS & BASES			
Brønsted-Lowry Theory (one view of acids & bases)	Further explanation		
Acids are proton donors. Bases are proton acceptors	A proton is a hydrogen ion, H ⁺ . Hydrochloric acid is an <u>acid</u> because it is a proton donor. A proton donor is a substance which gives a hydrogen ion away.		
When a substance dissolves in water, the solution may be <u>acidic</u> , <u>neutral</u> or <u>alkaline</u> . An acid is any substance which produces H^+ ions or H_3O^+ ions in water. In reality, H^+ is a single proton, and does not exist on its own. In water it joins to H_2O to form H_3O^+ ions. We use either $H^+(aq)$ or $H_3O^+(aq)$ to mean acid in water.			
	A <u>base</u> is a proton acceptor. This means a base will gain a hydrogen ion. Water acts as a base when it is put with hydrochloric acid because water will gain a proton to become		
Types of Acid	H ₃ O⁺.		
Strong – completely dissociate into ions eg HCl, HNO ₃ , H_2SO_4	$HCI(aq) + H_2O(I) \rightarrow H_3O^+(aq) + CI^-(aq)$		
HA + H ₂ O \rightarrow H ₃ O ⁺ + A ⁻ (or more simply HA + aq \rightarrow H ⁺ + A ⁻)	acid base acid base		
Weak – partially dissociate into ions	In the reaction below, ammonia acts as a <u>base</u> because it gains a hydrogen ion to become an ammonium ion. Water acts as the <u>acid</u> because it gives away a proton (to ammonia) to become a hydroxide ion.		
HA + H ₂ O \rightleftharpoons H ₃ O ⁺ + A ⁻ (or more simply HA + aq \rightleftharpoons H ⁺ + A ⁻)			
The weaker the acid, the less it dissociates & the more the equilibrium lies to the left.			
Types of Base	$NH_3(aq) + H_2O(I) \longrightarrow NH_4^+(aq) + OH^-(aq)$		
Strong – completely dissociate into ions eg NaOH, KOH, Ca(OH) ₂	base acid acid base		
$NaOH + aq \rightarrow Na^+ + OH^-$	Be sure to note the distinction between ammonia , NH_3 , and ammonium . NH_4^+ .		
Weak – partially dissociate into ions			
$NH_3 + H_2O \implies NH_4^+ + OH^-$	Amphiprotic Substances		
Strong and weak are not the same as concentrated and dilute . The strength of an acid or alkali depends on how ionised or dissociated it is in water. A strong acid does not become a weak acid just because it is diluted. Concentrated hydrochloric acid and dilute hydrochloric acid are both strong acids because they are both completely ionised in water. Concentrated ethanoic acid and dilute ethanoic acid are both weak acids because they are only partly ionised in water.	Some species such as water can act either as an acid <i>or</i> a base. Such species are called amphiprotic. Another example is the hydrogen carbonate ion, HCO_3^- . When dissolved in water, two possible reaction can occur: $HCO_3^-(aq) + H_2O(I) \rightleftharpoons H_3O^+(aq) + CO_3^{2^-}(aq)$ or $HCO_3^-(aq) + H_2O(I) \rightleftharpoons H_2CO_3(aq) + OH^-(aq)$		

Conjugate Acids and Bases	Comparing a weak and strong acid of the same concentration	
An important feature of the Brønsted theory is the relationship it creates between acids and bases. Every Brønsted-Lowry acid has a conjugate base, and vice versa.	Hydrochloric acid, HCl, is a strong acid that fully dissociates in water. Therefore, it will have a high concentration of H_3O^+ and a lower pH, and a high concentration of ions overall, resulting in a high electrical conductivity. Reaction rate of acid depends on concentration of hydrogen / hydronium ions - the higher the concentration, the faster the reaction. HCl has the lowest pH and therefore highest hydrogen / hydronium ion concentration. It will	
Acids are related to bases ACID = PROTON + CONJUGATE BASE		
Bases are related to acids BASE + PROTON CONJUGATE ACID		
For an acid to behave as an acid, it must have a base present to accept a proton.		
$HA + B \rightleftharpoons BH^+ + A^-$	react rapidly with magnesium ribbon or calcium carbonate	
acid base conjugate acid conjugate base	(marble chips).	
$HA + B \rightleftharpoons BH^+ + A^-$	dissociates in water. Therefore, it will have a relatively low	
$acid_1$ $base_2$ $acid_2$ $base_1$	concentration of H_3O^+ , resulting in a higher pH, and a low	
	conductivity. It will react slowly with magnesium ribbon or calcium	
Acidic & Basic Salts	carbonate (marble chips).	
Many salts dissolve in water to produce solutions which are not neutral.		
NaCl (ag) is poutral NaCl(c) + ag $> Na^{+}(ag) + Cl(ag)$. Since poither the Na ⁺	A weak acid and a strong acid of the same <u>concentration</u> and	
ion nor the $CI^{-}(aq)$ ion react with water, the solution is neutral.	amount of <u>reactant</u> but the weak acid will take longer to do it.	
NH₄CI (ag) is acidic. NH ₄ CI(s) + ag \rightarrow NH ₄ ⁺ (ag) + CI ⁻ (ag). The NH ₄ ⁺ ion	The ionisation of a strong acid is <u>complete</u> .	
can act as a proton donor to water.	$\mathrm{HCI} + \mathrm{H}_2\mathrm{O} \to \mathrm{H}_3\mathrm{O}^+ + \mathrm{CI}^-$	
$NH_4^+(aq) + H_2O(I) \stackrel{\sim}{\longleftarrow} NH_3(aq) + H_3O^+(aq)$. The $H_3O^+(aq)$ make the	A weak acid is only <u>partly ionised</u> .	
solution acidic.	$CH_3COOH + H_2O \rightleftharpoons H_3O^+ + CH_3COO^-$	
CH₃COONa (aq) and NaCO₃ (aq) are both alkaline due to formation of the OH ⁻ (aq) ion.	The number of H_3O^+ ions produced by a weak acid is small. When they have reacted with (for example) <u>magnesium</u> more of the ethanoic acid molecules ionise to produce more hydrogen ions and CH_3COO^- , ethanoate ions (<u>Le Chatelier's</u> <u>Principle</u>).	
$CH_3COONa(s) + aq \rightarrow Na^+(aq) + CH_3COO^-(aq)$: CH_3COO^- acts as a base.		
$CH_3COO^{-}(aq) + H_2O(I) \subset CH_3COOH(aq) + OH^{-}(aq)$		
Na ₂ CO ₃ (aq) + aq \rightarrow 2Na ⁺ (aq) + CO ₃ ²⁻ (aq): CO ₃ ²⁻ acts as a base. CO ₃ ²⁻ (aq) + H ₂ O(I) \rightleftharpoons HCO ₃ ⁻ (aq) + OH⁻(aq)	Eventually all of the ethanoic acid molecules ionise to react with the magnesium and so the same amount of product (<u>hydrogen</u> <u>gas</u>) will be produced.	

At A Glance

Brønsted-Lowry Theory Acids are proton donors. Bases are proton acceptors. $H^+ = a$ proton. $H^+(aq)$ or $H_3O^+(aq)$ means acid in water.

- Strong Acid- completely dissociate into ions / completely ionise / react completely with water eg HCI: HCI + $H_2O \rightarrow H_3O^+ + CI^-$
- Weak Acid partially dissociate into ions / incompletely ionise / don't react completely with water eg CH₃COOH + H₂O \rightleftharpoons H₃O⁺ + CH₃COO⁻
- Strong Base completely dissociate into ions eg NaOH + aq \rightarrow Na⁺ + OH⁻
- Weak Base partially dissociate into ions eg $NH_3 + H_2O \rightleftharpoons NH_4^+ + OH^-$

Strong and weak are not the same as concentrated and dilute. Strong & weak = how ionised, Concentrated & dilute = how much water.

Amphiprotic substances - species such as water or HCO₃⁻(aq) that can act either as an acid *or* a base. Eg

(actino as acid) $HCO_3^{-}(aq) + H_2O(I) \rightleftharpoons H_3O^{+}(aq) + CO_3^{-2}(aq)$ or (actino as base) $HCO_3^{-}(aq) + H_2O(I) \rightleftharpoons H_2CO_3(aq) + OH^{-}(aq)$

Conjugate Acids and Bases. Each B-L acid has a conjugate base, and vice versa.

Bases are related to acids BASE + PROTON → CONJUGATE ACID

Acidic & Basic Salts – some salts dissolve in water to produce solutions which are not neutral because the ions formed when they are dissolved react with water. Eg ammonium chloride solution – acidic, sodium ethanoate solution and sodium hydrogen carbonate solution – alkaline.

Comparing a weak and strong acid of the same concentration eg HCI & CH₃COOH.

	HCl – strong acid - fully ionised	CH ₃ COOH – weak acid – partially ionised
эΗ	Low pH eg 1 due to high concentration of H_3O^+	High pH eg 4-5 due to low concentration of H_3O^+
reaction or CaCO $_3$	Rapid due to high concentration of H_3O^+	Slow due to low concentration of H_3O^+
ctrical uctivity	high electrical conductivity due to overall high concentration of ions	poor electrical conductivity due to overall low concentration of ions
	oH reaction or CaCO ₃ ctrical uctivity	HCI – strong acid - fully ionised DH Low pH eg 1 due to high concentration of H_3O^+ reaction or CaCO3Rapid due to high concentration of H_3O^+ ctrical uctivityhigh electrical conductivity due to overall high concentration of ions

A weak acid and a strong acid of the same <u>concentration</u> and <u>volume</u> will react with same amount of reactant (or make the same amount of product from the same amount of reactant) because the total number of potential H_3O^+ ions are the same. All that will be different is the rate of the reaction.