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1. Introduction 
S-PLUS is a powerful, extendible, environment for data analysis and graphics. The “Standard Version” of 
S-PLUS provides access to the S-PLUS functionality through a point-and-click GUI. The “Professional 
Version” of S-PLUS includes, in addition, access to the S-PLUS command line and the capability to 
develop extensions to S-PLUS. These extensions may also include additions to the S-PLUS GUI. 

SLIDA is a collection of S-PLUS extensions (both commands and GUI) for planning and analyzing the data 
from empirical reliability studies (e.g., laboratory life tests, accelerated life tests, warranty repair data, and 
other field data). Most SLIDA capabilities are available through the SLIDA extensions to the S-PLUS GUI. 
THUS, SLIDA can be used with either the Standard or the Professional versions of S-PLUS (although 
advanced users with the professional version have access to additional functionality and the ability to make 
further extensions to SLIDA/S-PLUS). The main part of this document describes and illustrates the SLIDA 
graphical user interface (GUI). The methods and analyses parallel closely the methods and examples used in 
Meeker and Escobar (1998).  The items in the SLIDA menu correspond approximately to the chapters in the 
Meeker and Escobar (1998) textbook. Italic text presents general concepts concerning SLIDA that pertain 
to most, if not all, of the available SLIDA functionality and dialogs. 

The Appendix contains an outline of the SLIDA menu structure. 

 

There appears to be a non-serious bug in the S-PLUS 2000 GUI (both with and without the November 
1999 Service Release) that causes the “white” part of a multi-select dialog box from a back page of a 
dialog to appear sporadically when a dialog box first appears. By paging across the different pages in the 
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dialog, this will fix itself without further difficulty. We have not noticed this problem with S-PLUS 4.5R2 
(July 1998 service release).  

2. Getting Started with SLIDA 
All SLIDA data analyses require a data object. Life data analyses use a SLIDA “life data object.” A life 
data object contains, for a given data set, available information about failure times (e.g., failure times, 
running times, intervals in which failures are known to have occurred, etc.), time units (e.g., hours or days), 
explanatory variables (if any), and a data-set title. Having all of this information in a life data object makes 
it much easier to do various analyses on a particular data set. There are similar (but different) kinds of data 
objects for recurrence data analysis and for degradation data analysis, as described in subsequent sections of 
this document. 

2.1 Example data sets and a simple example  
For convenience of illustrating features of SLIDA and for purposes of teaching courses, SLIDA has a large 
number of built-in data objects. Data objects are included for most of the examples and many of the 
exercises in Meeker and Escobar (1998).  The appendix contains an index of and references for the original 
sources for these data sets. 

To see how easy it is to do an analysis with SLIDA Click SLIDA q Single distribution analysis  q  
Probability plot with nonparametric confidence bands, to bring  the dialog box in Figure 1. Choose from the 
list of life data objects (e.g., BearingCage.ld, for the Bearing Cage data from Abernathy et al. (1983), also 
analyzed in Example 8.16 of Meeker and Escobar , 1998). Now choose a distribution (e.g., Weibull), click 
“Apply” and a probability plot, like that in Figure 2, will appear in the graphics window. 

 

 

Figure 1 Dialog box to request a probability plot of the bearing cage data. 
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Figure 2 Weibull probability plot of the bearing cage data. 

 

2.2 Inputting data directly into S-PLUS:  Creating a data frame 
In order to analyze your own data, you first have to enter the data into an S-PLUS data frame. This can be 
done by importing from an existing file, as described in Section 2.4. For a small data set, however, one can 
simply enter data directly to make a S-PLUS data frame and then create a  SLIDA data object.  

Here we use the titanium crack initiation times described in Problem 6.7 of Meeker and Escobar (1998). 
There were nine observed crack initiations (failures) out of 100 specimens that were tested until 100 
thousand cycles. Choose Data q Select Data. Then choose the "New Data" option in the dialog box, enter a 
name for the data frame (e.g. Prob6p7 for Problem 6.7), and click OK. A blank data frame will appear. 
Type the numbers 18, 32, 93 into the first column.  In the second column, type the word Failure in each 
row. Then add a last row with time 100 and the word Censored. We also need a column of "Weights" to 
indicate observation multiplicity. Put "1" in all rows except the last, where you should put "91" for the 91 
censored units. The default names on the columns are V1, V2, and V3. You can use these, but it is better to 
change them to something more meaningful. Right-click on a column, choose properties, change the name, 
and click “OK”.  Repeat for other columns. After doing this, your table (actually a data frame) should look 
something like Table 1. 

Table 1 Data from Meeker and Escobar (1998) Exercise 6.7, as they would appear in an S-
PLUS data frame 

kcycles    Type    Count 
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 18 Failure  1 

 32 Failure  1 

 39 Failure  1 

 53 Failure  1 

 59 Failure  1 

 68 Failure  1 

 77 Failure  1 

 78 Failure  1 

 93 Failure  1 

100 Censored 91 

 

Users can also easily import a data frame from an Excel worksheet or from a text file (as shown later). 

2.3 Creating a life data object 

To do life data analyses (e.g., when the response is time to failure from a set of independent units) with 
SLIDA, one needs to make a life data object (in effect, defining the purpose of the columns in the data 
frame and adding other important information like a data title and time units). Once constructed, the data in 
the life data object can be analyzed using different SLIDA methods. A data object is constructed by 
choosing an S-PLUS data frame containing the raw data, specifying which column is the response and, as 
needed or desired, making other choices.  From the S-PLUS menu bar, choose SLIDA q 
Make/summary/view/edit data object q Make life data object to bring up the dialog box shown in Figure 3.  
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Figure 3 Blank (initial) dialog box for making a SLIDA life data object. 

Clicking on the Choose data frame pull-down arrow will show data frames in the SLIDA database and in 
your working database. Data frames for most of the examples in Meeker and Escobar (1998) and many 
other examples from the reliability data analysis literature are included on the SLIDA database. ASCII text 
data sets are also given in one of the SLIDA folders (SLIDA_text_data).  

Choose the data frame Prob6p7 from the list. Then choose the response (kcycles), the censoring indicator 
(Type), and weights (Count). Then click “Apply” (or OK). You will get a brief summary of the data.  

After one chooses a data frame, SLIDA will use the column names in that frame to make lists of variables 
for other  dialog box inputs. Choose the response column (named “kcycles” in the Prob6p7 titanium crack 
initiation data frame) and the fan censoring indicator (named “Status”). We will stay with the default name 
for the life data object (Prob6p7.ld). The Prob6p7 data frame also has a “Count” column indicating 
observation multiplicity. The Prob6p7 data has no failure mode column, explanatory variables, or 
truncation. A note can be added to the life data object. There is no limit to the length of this note, and it is 
printed when a summary of the data object is printed. In order to simplify use, SLIDA chooses, when 
possible, sensible defaults for inputs, but allows the user to easily change these if desired. The final dialog 
box for mapping the Prob6p7 data frame into a life data object Prob6p7.ld is shown in Figure 4.   
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Figure 4 Dialog box to make a life data object. 

 

Now when you launch the analysis dialog by using SLIDA q Single distribution analysis  q Probability 
plot with nonparametric confidence bands (see Figure 5) Prob6p7.ld will appear in the list of life data 
objects (actually, if it was just created, SLIDA will have remembered it and chose it as the default in this 
list). Now choose a distribution (e.g., Weibull), click “Apply” and the probability plot shown in Figure 6 
will come up in the graphics window.  

In this and the other SLIDA dialog boxes, there are other options on the “back” pages of the dialog, but we 
do not need to use them at this time. Generally, the required and frequently-used options s are on the front 
page, with less frequently needed options on the back pages. In this documentation, the focus will be on the 
required and other most important inputs for SLIDA. Users are encouraged to experiment with the options 
on the back pages. These options are, for the most part, self explanatory and, as much as possible, their 
operation is consistent across different SLIDA dialogs. 
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Figure 5 Dialog to request a probability plot of the titanium crack initiation data. 

 
 

 
Figure 6 Weibull probability plot of the titanium crack initiation data. 
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2.4 Importing data from Excel and text files 
S-PLUS has powerful tools for importing rectangular data sets (in which rows are cases and columns are 
variables) into a data frame. For example, to import from an Excel worksheet, into a data frame, use the 
following: 

(a) From the S-PLUS File menu, choose Import Data q From File... This will bring up the "Import Data" 
dialog box. 

(b) On the "Files of type" line, select 'Microsoft Excel Files ("*.xls")' 

(c) Find and left-click on the appropriate folder and then choose the desired Excel file (or optionally, type 
the path and file in the "File Name" box).  

(d) In the “File name box”, type or select the name, and optionally the path, of the file you want to import. 

(e) In the “Import to Data Frame”, box you can specify the target data frame name.  Generally, the default 
name (aaaa if the Excel file is aaaa.xls) is a good choice, but you might choose aaaa.frame instead to 
remind you that the object is a frame. 

(f) Click “Open” to import the file into the S-PLUS data frame object.   

Importing from a text (or ASCII) file is similar, except that one needs to specify “.txt” files (or “All Files”), 
choose the appropriate column delimiters, and specify whether or not the first line in the file contains 
column names. 

 

2.5 Changing SLIDA data-type aliases 
SLIDA maintains internal lists of names or aliases that can be used to identify “exact failures” and three 
different kinds of censored observations: right censored, left censored, and interval censored. These lists are 
used in creating a data object when there is a “Status” or “Censoring” identifer column (e.g., used to 
differentiate between failures and censored observations). The default aliases for different kinds of 
observations are: 

• Exact failures: Fail, Failed, Failure, Dead, Died, Exact, F, Report, fail, failed, failure, dead, died, 
exact, f, report,  or the number 1. 

• Right censored: Alive, Censored, Censor, C, Noreport, R-Censored, Removed, Right, S, Survived, 
Survive, Suspend, Suspended, alive, censored, censor, c, noreport, R-censored, removed, right, s, 
survived, survive, suspend, suspended, or the  number 2. 

• Left censored: L-Censored, Left, L-censored, left, or the number 3. 

• Interval censored: Bin, Interval, bin, interval, or the number 4. 

It is possible to add to or modify the default alias lists by using the Censor ID page of the Make life data 
object dialog box when creating a particular data object. Alternatively, it is possible to make a persistent 
change (either for the current session or across sessions) by using the SLIDA q Change Slida default 
options menu  item and going to the Censor ID page. In either case, the dialog page looks like Figure 7. To 
edit an entry, check the “Change any censor ID strings” box and then right-click on the list to be changed 
and choose zoom, to allow easy editing.  
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Figure 7 Dialog page allowing changes in the default aliases for observation identification. 

 

2.6 Other SLIDA default options (preferences) 
Using the SLIDA q Change Slida default options (preferences) brings up the dialog box shown in Figure 8, 
allowing changes in several of the SLIDA default options. There are dialog box pages for changing basic, 
plot, print, storage, and censor ID option defaults. Any options chosen while the “Save changes across 
sessions” box is checked will be saved and recalled in subsequent SLIDA sessions. Clicking the Restore 
defaults button will have all of the defaults revert to their original values. More details are given in Chapter 
14. 

 

 

Figure 8 Basic page of the dialog box for changing SLIDA default options. 
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The plot page of the SLIDA q Change Slida default options (preferences) dialog box, illustrated in Figure 
9, allows the  user to choose whether to date-stamp each plot (the default) or not. The “label or name on 
plot” option allows some personalization in which the user can insert a company or personal name on the 
plot. 
 

 

Figure 9 Plot page of the dialog for changing SLIDA default options. 

 

2.7 Graphics options and color schemes in SLIDA 
S-PLUS allows the user to have control over various graphics options. Although it is not necessary for the 
beginner, frequent users of  S-PLUS or SLIDA will want to become familiar with the available options. 
Some modifications of the default options have been implemented in the _prefs file that comes with SLIDA. 

The default color scheme in SLIDA has been changed from “Standard” to “Cyan Magenta.” This option 
provides a much better (sharper and less washed-out looking) set of colors for SLIDA graphics.  The 
standard or other build-in options can be chosen with Options q Graph Style q Color and changing the 
color option box.  

Another useful option is to use Options q Graph Options and change Graph Style to black and white. The 
SLIDA default for the black and white graph style (which differs from the S-PLUS default) uses just black 
on white, with no grey scales. Again, the S-PLUS standard black and white Graph option can be restored 
with Options q Graph Styles q Black and White. 

Under Options q Graph Options, the SLIDA default for Auto Pages is “Every Page” so that new pages 
automatically are added to a graphsheet as new plots are created. This makes it easy to compare plots from 
different analyses. Beware, however, that saving a large number of graphs can tie up computer system 
resources and affect performance or even cause Windows to crash (saving a large number of previous 
dialog boxes also has the same effect). Delete unwanted pages by right-clicking on the page number to be 
deleted. 

 

3. Single Distribution Life Data Analyses  
Analysis of data for the purpose of estimating a single underlying failure-time distribution is the most 
common type of relaibility data analysis. This chapter describes methods for such analyses. Even when 
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there are several different identifiable groups, it is often desired to focus on one group or another or (when 
appropriate) to pool data from different groups for analysis. Choosing SLIDA qqqq Single distribution 
life data analyses shows the SLIDA single distribution analysis options. 
 
 
3.1 Event plot 
For some data sets, an event plot provides a useful visualization of the nature of the data. Using SLIDA qqqq 
Single distribution life data analyses qqqq Event Plot brings up the dialog box shown in Figure 10. 
 

 

Figure 10 Dialog box requesting a life data event plot for the fan data. 

 
After choosing the Fan.ld life data object (based on the diesel generator fan failure data described on page 
133 of Nelson 1982 and reanalyzed in Example 7.12 of Meeker and Escobar 1998) from the pull-down list, 
click “Apply” or “OK” to see the event plot shown in Figure 11. Lines in Figure 11 ending in an * indicate 
failures. Lines with a →* at the end are units that had not failed at the time that the data were analyzed. 
The numbers indicate the observation multiplicity for those observations that have counts greater than one. 
In the case of the fan data, there is a complicated pattern of reported failure times and right-censored 
observations resulting from the different amounts of operating time for the systems in which the fans had 
been used. 
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Figure 11 Life data event plot for the fan data. 

 
3.2 Nonparametric estimation of the failure-time cdf 

Using SLIDA qqqq Single distribution life data analyses qqqq Plot nonparametric estimate of 
cdf and confidence bands brings up the dialog box in Figure 12.  
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Figure 12 Dialog box for requesting a plot and table of the estimated fraction failing as a function of 
time. 

 

Then choose life data object Fan.ld  (the only required input), put a check in “Print table” and click  
“Apply.  This will produce a plot like that in Figure 13 and a table of the nonparametric estimate and 
confidence intervals for the fraction failing as a function of time. The estimates are computed using the 
Kaplan-Meier estimator. When data have complicated censoring pattterns such as interval-censored 
observations with overalpping intervals a generalized version of the Kaplan-Meier estimator, known as the 
Peto/Turnbull estimator is used instead, as described in Section 3.10 of Meeker and Escobar (1998). 
Chapter 3 of Meeker and Escobar (1998) describes the methods for computing nonparametric estimates and 
corresponding confidence intervals/bands from censored data (including complicated arbitrary censoring) 
and provides references and examples corresponding to these SLIDA capabilities. 
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Figure 13 Plot of estimated fraction failing as a function of time for the turbine fans. 

 
Table 2 provides a table of the nonparametric estimates from the turbine fan data, along with standard errors 
and approximate 95% pointwise confidence intervals. 
 
Table 2 Kaplan-Meier nonparametric estimate of the fraction failing as a function of time for the 
turbine fans. 
Nonparametric estimates from  Fan Failure Data  
with approximate 95% pointwise confidence intervals  
 
   Hours-lower Hours-upper    Fhat SE_Fhat 95% Lower 95% Upper  
 1           0         450 0.00000 0.00000        NA        NA 
 2         450        1150 0.01429 0.01418  0.002009   0.09449 
 3        1150        1600 0.04328 0.02444  0.014024   0.12577 
 4        1600        2070 0.05800 0.02815  0.021934   0.14459 
 5        2070        2080 0.09225 0.03607  0.041857   0.19121 
 6        2080        3100 0.10938 0.03925  0.052811   0.21291 
 7        3100        3450 0.12833 0.04274  0.065085   0.23742 
 8        3450        4600 0.14770 0.04597  0.078091   0.26173 
 9        4600        6100 0.17277 0.05100  0.094016   0.29593 
10        6100        8750 0.20458 0.05812  0.113253   0.34122 
11        8750       11500 0.29296 0.09804  0.140791   0.51166 
 
When using SLIDA, it is often better to click on “Apply” rather than on “OK” to request an analysis. Then 
minimize the dialog box to better see the results. Then to modify the analysis, restore the dialog box, make 
desired changes, click “Apply,” and minimize the dialog box again. When completely done with the dialog 
box, click “Cancel.” If one uses “OK” instead, it will be more difficult to modify previous analyses, as 
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certain steps in the analysis specification would need to be retraced. S-PLUS allows one to choose a 
previous dialog box state by clicking on the buttons at the bottom of the dialog box. When doing this, 
however, S-PLUS does not properly restore whether entries in the dialog box are active or inactive 

3.3 Probability plots and distribution assessment 

Probability plots are one of the most important tools for reliability data analysis. The ideas and concepts 
underlying probability plots, along with a large number of examples, is given in Chapter 6 of Meeker and 
Escobar (1998).  The basic idea is to plot a representation of a nonparametric estimate of the fraction failing 
as a function of time (traditionally,  this estimate has been a set of points) on special distribution-dependent 
nonlinear plotting axes on which the specified theoretical distribution would plot as a straight line. 

Use SLIDA qqqq Single distribution life data analyses qqqq Probability plot with 
nonparametric confidence bands to bring up the basic probability plot dialog, illustrated in Figure 
14. Again, choose the life data object Fan.ld, choose “6 distributions,” click “Apply,” and iconify the dialog 
box. This will make a six-distributions probability plot like the one in Figure 15, from which one can 
visually compare several different distributions including the popular Weibull and lognormal distributions. 

 

Figure 14 Dialog box requesting the 6-distributions probability plots with (default) simultaneous 
confidence bands. 
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Figure 15 Six-distributions probability plots with simultaneous confidence bands. 

Now, restore the dialog box in Figure 14, change to “Choose dist,” and choose a particular distribution 
(e.g., lognormal), and click “Apply.” This will create the probability plot, shown in Figure 16, that will 
allow one to focus the reasonableness of the specified distribution as a model for the data. By default, 
simultaneous confidence bands are also provided. See Sections 3.8 and 6.3 of Meeker and Escobar (1998) 
for technical details, references, and other examples of these simultaneous confidence bands. 
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Figure 16 Lognormal probability plot with simultaneous confidence bands. 

Chapter 6 of Meeker and Escobar (1998) provides theory and a detailed description of methods for 
interpreting these probability plots. If one can draw a straight line through the simultaneous confidence 
band, for the chosen distribution (lognormal in Figure 16), then there are lognormal distributions that are 
consistent with the data. Then it is not possible to rule out the possibility that the data were generated by a 
lognormal distribution. One should, of course, try other distributions and compare results. 

Figure 17 is a snapshot of the SLIDA qqqq Single distribution life data analyses  part of the SLIDA 
menu. The SLIDA menu items (shown on the left) correspond to different tasks/analyses (e.g., plan a life 
test, analyze single-distribution life test data, compare two different populations, etc.). The SLIDA submenu 
items (shown on the right) are organized according to the order in which a complete analysis would be 
done, typically starting with simple graphical methods and then progressing to model fitting, graphical 
display of model-fitting results, and sensitivity analyses. 



 18 

 

Figure 17 View of the SLIDA menu showing the options for single distribution analyses. 

 

3.4 Maximum likelihood estimation of the failure-time cdf 

Using SLIDA qqqq Single distribution life data analyses qqqq Probability plot with parametric 
ML fit produces the dialog in Figure 18. This dialog allows the user to request a probability plot showing 
the ML estimate for the chosen distribution (plotted as a straight line) along with the points usually plotted 
in the probability plot. 

 

Figure 18 Dialog box for getting a probability plot with an ML fit. 

By default, SLIDA also plots a set of normal-approximation 95% pointwise confidence intervals. These 
intervals allow one to obtain a visualization of estimates of both failure probabilities and distribution 
quantiles and the associated statistical uncertainty due to limited sample size. One of  the back pages in the 
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Figure 18 dialog box, shown in Figure 19, allows the user also to obtain a plot of the corresponding 
parametric ML estimate of the hazard function versus time. A table of the hazard function estimates and 
corresponding confidence intervals is also available. The resulting probability plot with ML estimates is 
shown in Figure 20 and the plot of the hazard function is given in Figure 21. Chapters 2, 7 and 8 of Meeker 
and Escobar (1998) give the theory and methods for understanding functions and using the corresponding 
analyses.  

 

Figure 19 The Hazard page of the probability plot with ML fit dialog, allows the user to request and 
customize a plot of the hazard function ML estimate. 

Table 3 gives tabular output from fitting the lognormal distribution to the fan data. The lines with the Greek 
letters mu (µ) and sigma (σ) are, respectively, ML estimates for the mean and standard deviation of the 
distribution of logarithm of fan life. Standard errors and 95% normal-approximation confidence intervals 
are also given. 

Table 3 Lognormal ML estimation results for the turbine fan data. 

 
Fan Failure Data   

Maximum likelihood estimation results: 

Response units: Hours 

Lognormal Distribution 

Log likelihood at maximum point: -134.5  
 
  Parameter              Approx Conf. Interval 

        MLE Std.Err. 95% lower 95% upper  
   mu 10.14   0.5211     9.122    11.165 
sigma  1.68   0.3893     1.066     2.645 
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Figure 20 Lognormal probability plots of the fan data showing the ML estimate and parametric 
pointwise confidence intervals. 
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Figure 21 Lognormal hazard function estimate for the fan data. 

 

3.5 Likelihood contour/perspective plot 

Using SLIDA qqqq Single distribution life data analyses qqqq Likelihood contour/perspective 
plot produces the dialog box shown in Figure 22. This dialog box allows the user to request either a 
contour or a perspective plot of the relative likelihoood function or the corresponding joint confidence 
region (described and compared in Sections 8.2 and 8.3 of Meeker and Escobar,1998) for a given set of 
data.  Alternatively, one can request a perspective (or wire-frame) plot of the relative likelihood function. 
The dialog has an option to indicate the position of the ML estimates as well as the usual options to control 
plot axes. 
 
The dialog box shown in Figure 22 allows the user to request either a perspective plot or  a contour plot 
showing the approximate joint confidence region for the paramters of a log-location-scale or location-scale 
distribution.  We illustrate the use of this dialog box with the the bearing cage data (life data object 
BearingCage.ld) from Abernathy et al. (1983). Figure 23 shows the perspective plot of the relative 
likelihood, followed by  the contour plot of the joint confidence region in Figure 24. 
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Figure 22 Dialog for requesting a contour or perspective plot of the bearing cage likelihood function. 
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Figure 23 Perspective plot of the relative likelihood function for lognormal parameters based on the 
bearing cage data. 

Notice the “shark-fin” shape of the relative likelihood in Figure 23. This reflects the strong positive 
correlation between the ML estimators of the lognormal parameters; this correlation is the result of the 
heavy right censoring in this data set. The contour plot of the joint confidence region for the lognormal 
parameters shown in Figure 24 is easier to interpret. 
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Figure 24 Joint confidence region for lognormal parameters based on the relative likelihood function 
for the bearing cage data. 

 
3.6 Comparison of ML estimates from different distributions 
The dialog box produced by Single distribution life data analyses qqqq Compare distribution 
ML fits on probability plot, shown in Figure 25, allows the comparison of ML estimates for a chosen 
baseline distribution with one or more other distributions. The required inputs are the life data object (for 
the following example we continue to use the BearingCage.ld life data object), the baseline distribution, and 
the comparison distribution.  
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Figure 25 Dialog box requesting a comparison of the lognormal and Weibull ML estimates on 
lognormal probability paper. 

 
The objective of the analysis of the bearing cage data was to estimate life out to 10,000 hours. In order to 
do this, the Plot Options page of the Compare ML fit dialog box, shown in Figure 26, is used to request 
extrapolation outside of the range of the data, as shown in Figure 26. Clicking on “OK” or “Apply” will 
then produce the desired comparison probability plot shown in Figure 27 (changing the range using the 
options in the Modify Plot Axes page of the dialog box will change only the axis range and not the range of 
cdf evaluation). 
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Figure 26 Plot Options page of the Compare ML fit dialog showing how to extend the range of cdf 
evaluation 
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Figure 27 Lognormal probability plot comparing the lognormal and Weibull ML estimates for the 
bearing cage data. 

 
There is little difference between the probability estimates up to 1000 hours. Note, however, the large 
difference between the lognormal and Weibull estimates of fraction failing outside the range of the data. 
 
3.7 Fitting a log-location-scale (location-scale) distribution with a given shape 

(scale/slope) parameter 
In some applications, especially when the amount of data is limited, it may be useful to fit a distribution 
with a given shape parameter. Although it is rare that one would know such a shape parameter exactly, such 
evaluations are useful if one repeats the analysis using different values of the given parameter within a given 
ranges, perhaps based on previous experience with a similar failure mode. More details are given in Section 
8.5 of Meeker and Escobar (1998). 
 
Fitting a location scale or log location scale distribution with a fixed shape (slope) parameter is easy in 
SLIDA. To illustrate this, we will continue with the bearing cage example. For the bearing cage data, the 
wide confidence intervals for )(tF outside of the range of the data in Figure 27 are due, in large part, to the 

fact that the lognormal shape parameter is unknown and that there is only a small amount of data available. 
Important improvement in precision can be obtained by specifying a value for the shape parameter. Using 
SLIDA qqqq Single distribution life data analyses qqqq Probability plot with parametric ML 
fit produces the dialog in Figure 28.  
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Figure 28 Dialog box showing how to fit a Weibull distribution with a fixed shape (slope) parameter. 

 
The resulting probability plot is given in Figure 29. 
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Figure 29 Bearing cage Weibull probability plot with the fixed ββββ=2 ML estimate line. 

 
Notice that the confidence interval lines in the Weibull probability plot are parallel. This implies that the 
intervals will be narrower outside of the range of the data. Of course, this would provide a false sense of 
precision if the Weibull shape parameter (not to mention the assumption of a Weibull distribution itself) 
does not provide an adequate approximation to the actual bearing cage distribution. 

4. Planning a Single Distribution Study 
This section describes tools for evaluating proposed lifetest plans. The tools presented here are based on 
theory and methods described in Chapter 10 of Meeker and Escobar (1998). 

SLIDA single distribution life test evaluations are done in three stages.  

• In the first stage the user specifies the testing situation by providing planning values (essentially, 
best guesses for the underlying model, including information on the life distribution, including the 
distribution’s parameters values) in the form of a plan value object. Given such planning 
information, it is possible to evaluate any specified test plan or plans.  

• In the  second stage  one can ask for a plot of approximate required sample size as a function of 
desired precision. This evaluation, based on large sample approximate variance computations, 
allows the test planner to see, at a glance, the effect of sample size for a given test length (as 
specified by time for Type I censoring  number of test units for Type II censoring). 

• In the last stage of evaluation, one can simulate a specified test plan a specified number of times. 
Plots of the samples from a few of the individual simulated experiments and a summary of ML 
estimates from all of the simulations (both presented on appropriate probability plots) provides a 



 30 

visualization of the possible results from a life test experiment and the reasons why estimates of 
certain quantiles might or might not be estimated precisely. 

4.1 Specifying test planning information (planning values) 

Using SLIDA qqqq Plan Single Distribution Analyis qqqq Specify test planning information 
(planning values) brings up the dialog box in Figure 30, allowing the user to specify planning values 
needed to evaluate and compare different life test plans. The default name for the planning value object is 
last.xxx.pv where xxx is the chosen distribution. Generally it is a good idea to edit the suffix “last” to be 
something that describes the actual application  (in the example below we use DeviceP). This “planning 
value object” will be used in the simulation/evaluation stage of planning. To specify the required 
distribution-parameter plannning values, start by choosing a method: a) point and slope or b) two points. 
Either method can be used to specify a line on a  probability paper (with an underlying assumed 
distribution). For DeviceP, the engineers expect approximately 10% of the tested units to fail by 1000 hours 
and that the failure time distribution will be adequately described by a lognormal distribution with a shape 
parameter sigma (σ) in the neighborhood of 2. After specifing the needed information, click “Apply” and 
examine the resulting probability plot reflecting the inputted information, as illustrated in the Figure 31. 
Some tabular information is also provided in Table 4. 

 

 

Figure 30 Dialog box for specifying life test planning information. 
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Figure 31 Probability plot depicting life test planning information. 

 

Table 4 Tabular output from the dialog used to specify planning values. 

Distribution:  Lognormal   
Time units are:  Hours   
  
The  0.1 quantile is:  1000   
 
Shape parameter beta is:  0.5   
Characteristic life eta is:  12976   Hours   
  
mu =  9.47   
sigma =  2   
 
 
Failure probabilities from the Lognormal distribution 
   Hours fail.probs  
  1e+001   0.000169 
  1e+002   0.007490 
  1e+003   0.100000 
  1e+004   0.448181 
  1e+005   0.846381 
  1e+006   0.985084 
  1e+007   0.999556 

 
 
 
4.2 Plot test planning information (planning values) 
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Using SLIDA qqqq Plan Single Distribution Analysis qqqq Plot test planning information 
(planning values) allows the user obtain a plot and table, like those in Figure 31and Table 4, describing a 
previously created plan value object. 

 

4.3 Plot of approximate required sample size 

Using SLIDA qqqq Plan Single Distribution Analyis qqqq Plot of required sample will produce 
the dialog box in Figure 32.  

 

 

Figure 32 Dialog box for requesting a required sample size plot. 

 
Note that the most recently created plan value object (within the current session) is remembered and 
displayed as the default to be used. Alternatively, a different, previously created, plan values object can be 
chosen. Then one must choose a censoring type and either a censoring time or number of failures (for Type 
I and Type II censoring, respectively) and, if desired, a  quantileof interest of other than the default of .1. 
Clicking on “OK” or “Apply” will produce a plot like the one in Figure 33. For log-location-scale 
distributions (Weibull, lognormal, loglogistic) confidence interval precision is described in terms of a factor 
R in that the normal-approximation confidence interval for a quantile has the form [^tp/R,^tp×R] where 
R>1 and the interval is more precise for small values of R (see Chapters 7 and 8 of Meeker and Escobar 
1998). For location-scale distributions, precision is given in terms of the half-width of the two-sided 
confidence interval. 
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Figure 33 Plot giving sample size needed as a function of the target confidence interval precision 
factor. 

For example, Figure 33 shows that a sample size of approximately 70 is required to have a 95% confidence 
interval target precision factor of 2. The actual precision factor R, because it depends on the data, is random 
for any given life test, but should be no more than the target value with probability of approximatley .5. To 
get a sense of how much R might vary from the target value, one can use the simulation tool described in 
Section 4.4. 
 
4.4 Life test simulation 

Although the plot of required sample size versus precision factor is useful for determining the approximate 
sample size needed for a life test, simulating the life test avoids large sample approximations, provides more 
insight into the results that might be obtained, and gives one a better sense of the trade-off between sample 
size and test length. Using SLIDA qqqq Plan Single Distribution Analyis qqqq Simulate a life test  
requests a dialog box like that shown in Figure 34. This dialog box allows one to specify the inputs needed 
to produce a simulation of a user-specified life test plan.  
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Figure 34 Dialog box to request a life test simulation. 

The user specifies the number of units to be tested (“Sample size”) and length of test (“Censoring time” for 
time or Type I censoring) or number of units to fail (for failure or Type II censoring) and, perhaps some 
other optional inputs (e.g., which quantile of the distribution is of primary interest).  One can choose to look 
at the individual samples from some of the simulated samples by entering a small integer (usually 5 or 6 is 
sufficient)  into the box marked “View detail for how many samples?” If an integer k > 0 is given in this 
cell, then after completion of the simulation, the graphsheet will contain k probability plots showing the 
planning value line (with a dark thick line) along with the observed failures and the ML estimate line (a thin 
line to contrast with the “true” planning value line) for each of the k samples. Figure 35 provides an 
example of such a plot. It is interesting to observe the variability in the failure times and corresponding ML 
estimate lines from sample to sample in a sequence of these plots. The final probability plot, illustrated in 
Figure 36, contains, in summary,  the ML estimates from all of the simulated samples. When a quantile 
(number between 0 and 1) is given in the “Quantile line at” cell, a horizontal line is drawn at that level on 
the probability plot, allowing a visualization of the sampling variability in the estimates of that quantile, and 
the average precision factor for the confidence intervals for the corresponding confidence intervals is shown 
in the plot. 
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Figure 35 Probability plot and ML estimate for the first simulated life test. 

 
Figure 35 shows the probability plot for the first simulated sample. Generally looking at three or four of 
these individual simulation results (we only show one here) is sufficient for getting a good idea how the 
samples in the proposed life test might behave (assuming that the inputted planning information is 
reasonably accurate). 



 36 

Time Units

.005
.01
.02

.05

.1

.2

.3

.4

.5

.6

.7

.8

.9

.95

.98

.99
.995

10^01 10^02 10^03 10^04 10^05 10^06 10^07

P
ro

ba
bi

lit
y

30 simulated life tests of size n = 70 : Lognormal Distribution with mu= 9.47  and sigma= 2 
 Lognormal Probability Plot  

Censor Time ->

average 95% confidence interval 
precision factor R for t_0.1 = 2.02

 

Figure 36 Summary showing ML estimates for all 30 life test simulations. 

 

Figure 36 shows a summary of the ML estimates from 30 simulations. The average precision factor printed 
in this simulation-summary plot will vary somewhat from simlation to simulation unless the number of 
simulations is very large (e.g., 1000’s of simulated life tests). Nevertheless, this numerical summary of the 
simulation provides a useful measure of sampling variability and the corresponding precision that one can 
expect to see in the results of one’s life test. 
 
4.5 Probability of successful demonstration 

After conducting a life test, a successful demonstration of reliability has occurred if the lower confidence 
bound on reliability exceeds the given standard  q=1-F(t) [which is the same as the upper confidence bound 
on fraction failing being less than a standard p=F(t)]. Equivalently, the demonstration is successful if lower 
confidence bound on on the corresponding p quantile of the life distribution is larger than the corresponding 
standard (e.g., for demonstrating 95% reliability, the standard would be based on the .05 quantile of the life 
distribution). For a log-location-scale distribution, the probability of a successful demonstration for a type II 
censored life test (test run until a specified number of units fail) is a function of the level of reliability to be 
demonstrated, the number of units to be tested, the number needed to fail, and the underlying true 
reliability.  

SLIDA has a tool to allow one to compute and make plots of the probability of successful demonstration. 
The dialog box in Figure 37 allows the user to specify the necessary inputs.  In Figure 37, sample sizes 
n=20,30,40 with corresponding number failing r=10,15,20 (i.e., 50% failures) were chosen. In general, the 
number failing r must be at least 2 but no greater than n. The probabilities of successful demonstration are 
computed via simulation. The default number of simulations was increased from the default 300  (which 
allows quick but rough evaluations) to 1000, which is good enough for most practical purposes (although 3 
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or 4 thousand simulations might be used to make a publication-quality figure). The default reliability to be 
demonstrated was changed from the default 0.5 to 0.9. 

 
 

Figure 37 Dialog box for requesting the computation of probability of successful demonstration 
curves from q=0.9. 

 
Figure 38 is a plot of the probability of successful demonstration as a function of the actual (unknown) 
reliability. As expected, it is easier to make the demonstration  (i.e., the probability of success is higher) if 
the actual reliability is much larger than the standard to be demonstrated.  
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Figure 38 Weibull life test probability of successful demonstration curves for q=0.9. 

 
After completing a simulation to compute the probability of successful demonstration, SLIDA will save the 
simulation results as an object, making it possible to reuse the results to make evaluations for other given 
values of reliability as the standard. Figure 39 shows a dialog box in which the results from the previous 
simulation will be used to compute another set of probability of successful demonstration curves with 
q=0.7. From this dialog box it is also possible to choose from among the n,r combinations used in the 
previous simulation to limit the number of curves to appear on the plot. 
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Figure 39 Dialog box using existing results (previously computed simulation) to compute probability 
of successful demonstration curves for q=0.7. 

The resulting plot is shown in Figure 40. As expected, the required sample sizes in this plot are smaller 
because of the less demanding demonstration. 
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Figure 40 Weibull life test probability of successful demonstration curves for q=0.7. 

 

5. Analysis of Data with More Than One Cause of Failure 
Both laboratory life tests and field-failure reporting systems (e.g., warranty repair processes) result in data 
with more than one failure mode. For example, a system may have several components and the failure of 
any one of  these components could cause the system to fail. For many purposes, it is important to use 
failure mode information in the analysis and interpretation of one’s data. This is especially true when the 
purpose of the analysis is to identify opportunities for improving product reliability.  

One commonly used model for multiple failure modes supposes that each unit has a “potential” failure time 
for each of the possible “modes” of failure and that the distribution of these failure times can be described 
with a joint distribution. When it can be assumed that the different potential times to failure are 
approximately statistically independent, this modeling approach provides a simple method of modeling and 
analysis that allows estimation of the failure time distribution for any particular failure mode or for the 
entire system with any specified combination of failure modes active. See Chapter 15 of Meeker and 
Escobar (1998) for technical details and other information about the analysis of such data. 

 
 
5.1 Summary analysis of individual failure modes 

Consider the Device-G data described in Section 15.4 of Meeker and Escobar (1998). The devices that 
failed during the study failed from either a surge or a wear out failure mode. The underlying mechanisms 
causing these two failure modes were different and it would be reasonable to assume that the times to failure 



 41 

for these two different modes would be independent. In order to estimate the failure time distribution of the 
individual failure modes, under the assumption that the failure modes failure times are independent, use 
SLIDA qqqq Multiple failure mode life data analysis qqqq Individual modes. Then choose the life 
data object (DeviceG.ld in this case) and distribution (Weibull for this example) in the dialog box, as shown 
in Figure 41. 

 

 

Figure 41 Dialog box requesting separate analyses of different failure modes for the Device-G data. 

Other options for graphical and tabular output are available in the back pages of the dialog box. When done, 
click “OK” or “Apply,” producing the probability plot with estimated distributions for the two individual 
failure modes in Figure 42. Tabular output giving the Weibull parameter estimates is also provided, as 
shown in Table 5.  

In this application, management was interested in answering a number of different questions with these data. 
Among the requested outputs was the failure-time distribution for the wear out failure mode alone, which 
would be the failure time distribution for the device if the surge failure mode could be eliminated. A table of 
these estimates (requested with the “Tabular Output” page of the dialog box) is also shown in Table 5. 
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Figure 42 Analysis of the individual failure surge and wear out failure modes for the Device-G field 
data. 

 

Figure 42 shows immediately that the surge failures tend to occur anytime during life, from early to late. No 
wearour failures were seen until after 100 thousand cycles. Table 5 provides a summary of separate ML 
estimations for both the Surge and the Wearout failure modes and some additional details for the Wearout 
failure mode 

Table 5 Summary of ML estimation for Surge and Wearout failure modes and details for the 
Wearout failure mode 

Response units: Kilocycles 
 
Weibull Distribution 
          Likelihood   eta  se_eta  beta se_beta 
1 Wearout     -47.16 340.4  36.14 4.337  1.4506 
2   Surge    -101.36 449.5 191.94 0.671  0.1578 
 
Total likelihood= -148.5 
 
Weibull Distribution Failure Probability Estimates 

From DeviceG Wearout Failure Mode Group Wearout 

with Weibull MLE and Pointwise 95% Confidence Intervals 

Kilocycles    Fhat    Std.Err. 95% Lower 95% Upper 
140           0.02098  0.02270  0.002453    0.1574 
160           0.03714  0.03330  0.006179    0.1931 
180           0.06113  0.04510  0.013764    0.2330 
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200           0.09482  0.05712  0.027638    0.2785 
220           0.13983  0.06853  0.050521    0.3318 
240           0.19722  0.07932  0.084269    0.3961 
260           0.26718  0.09088  0.128000    0.4752 
280           0.34864  0.10569  0.176941    0.5713 
300           0.43911  0.12529  0.224124    0.6797 
 
 

5.2 Combined modes (series system) analysis 

SLIDA also computes estimates of the series-system failure-time distribution with all failure modes 
operating. To do this, use SLIDA qqqq Multiple failure mode life data analysis qqqq Combined 
modes and again choose the life data object and distribution and click “OK” or “Apply,” producing the 
probability plot with estimated distribution for the system with both failure modes active, shown in Figure 
43. 

 

 

Figure 43 Series system competing risk analysis for the Device-G data. 

 
5.3 Creating life data objects for individual failure modes 
Using SLIDA qqqq Multiple failure mode analysis qqqq Make life data objects for individual 
failure modes will bring up the dialog box in Figure 44, allowing the user to create separate life data 
objects for each failure mode in the multiple failure mode life data object.  
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Figure 44 Dialog box to ask that individual life data objects be made for individual failure modes. 

  
 Names for the life data objects are chosen automatically by appending the failure mode name to the root of 
the failure mode life data object name (DeviceG.Surge.ld and DeviceG.Wearout.ld in the example). Once 
these individual life data objects have been created, all of the SLIDA methods for single-distribution 
analyses can be applied to the analysis of the individual failure modes, under the (important) assumption 
that the individual failure modes are acting independently. 

6. Comparison of Distributions Life Data Analysis 
Experiments are commonly conducted for the purpose of comparing the life distributions of different or 
competing materials, formulations, designs, manufacturers, and so on. Similar data arise from warranty data 
and field tracking studies. The analysis methods presented here for such data generalize methods in classical 
statistical methods commonly known as two-sample comparison and one-way analysis of variance. SLIDA 
generalizes these methods, allowing for censoring, non-normal distributions, and comparisons with non-
constant shape (slope) in the distributions being compared. 

6.1 Comparison with different shape (slope) parameters 

Using SLIDA qqqq Comparison of distributions life data analysisqqqq Probability plot and ML 
fit: different shapes (slopes)  brings up a dialog box like that in Figure 45asking for input of a 
comparison life data object and a distribution, as shown below. A comparison life data object is a life data 
object that contains at least one categorical explanatory variable (in S-PLUS, an explanatory variable is 
assumed to be categorical (a “factor” in  SPLUS jargon) if it contains any alphabetic characters). The Life 
data object list will contain all of the “comparison life data objects” found in the SLIDA data base or in 
the user’s local data base. As done for single distributions life data objects, comparison life data objects are 
created by using the SLIDA qqqq Make data object qqqq Make life data object part to the SLIDA 
menu. If there is more than one categorical explanatory variable in the comparison life data object, then one 
needs to choose which one to use in the comparison. The following example uses the Snubber data  (life 
data object Snubber.ld) from Nelson (1984), page 529 and reanalyzed in Examples 17.13 to 17.15 in 
Meeker and Escobar (1998), comparing two different Snubber designs (a snubber is a toaster component). 
Following these previous analyses, the normal distribution is fit to the data. 
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Figure 45 Dialog box requesting comparison of the Snubber data with separate normal distribution 
standard deviations. 

Plot and output options, similar to those in the other dialogs boxes, are available on the back pages of 
dialog boxes like that shown in Figure 45. After the needed and desired optional inputs have been given in 
the dialog, click on “Apply” to do the analysis.  
 
Figure 46 gives the resulting individual probability plots for each (in this case both) of the samples in the 
the data set. Table 6 gives a tabular summary of the results. Tests or confidence intervals to compare 
particular quantiles or other parameters are easy to construct, following the general approach given in 
Section 17.8 of Meeker and Escobar (1998). 

Table 6 Normal distribution ML estimates for the Snubber data with separate normal distribution 
standard deviations. 

Snubber Failure Data  

Maximum likelihood estimation results: 

Response units: Toaster Cycles 

Normal Distribution 

  Design Likelihood     mu  se_mu sigma se_sigma  
1    Old     -146.8  908.1  76.19 362.4     63.4 
2    New     -138.6 1126.6 123.21 546.0     99.5 
 
Total likelihood= -285.4 
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Figure 46 Normal probability plot comparing the new and old snubber designs with separate normal 
distribution standard deviations. 

 

6.2 Comparison of likelihood contour plots 

Using SLIDA qqqq Comparison of  distributions life data analysisqqqq Comparison likelihood 
contour plot brings up a dialog box like the one in Figure 47, allowing one to specify a comparison life 
data object and distribution in order to produce corresponding two-parameter contour plots for each of the 
groups being compared. Figure 48 shows a comparison contour plot of normal distribution joint confidence 
regions for µ and σ for the Snubber data.  
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Figure 47 Dialog box requesting contour plots comparing the new and old snubber designs assuming 
separate normal distribution standard deviations. 
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Figure 48 Contour plot showing joint confidence regions for the normal distribution parameters for 
the two different snubber designs. 

The SW to NE orientation of the contours in Figure 48 is a result of the right censoring. The degree of 
overlap provides an alternative visualization of the statistical “closeness” of the parameters of the life-time 
distributions for the two different snubber designs. 

6.3 Comparison with common shape (slope) parameters 

For some applications, it is reasonable to model the different populations or processes being compared as 
having the same shape (or slope) parameters, differing only with respect to scale (for a log-location-scale 
distribution) or location (for a location-scale distribution). This tends to simplify the analysis because the 
equality of any particular distribution quantile would imply the equality of other distribution quantiles (this 
can be seen by noting that, with this assumption, cdfs plotted on probability paper are parallel).  

Using SLIDA qqqq Comparison of  distributions  life data analysisqqqq Probability plot and 
ML fit: common shapes (slopes) brings up a dialog box like that shown in Figure 49. This dialog 
box is similar to that used for the comparison with non-common shapes (slopes).  
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Figure 49  Dialog box requesting a probability plot comparing the new and old snubber designs 
assuming a common normal distribution standard deviation. 

 

As before, choose a “life data object” (by default SLIDA puts in the list  only life data objects with a 
comparison or factor  explanatory variable) and a “distribution.” An estimate of the model parameters is 
given in the S-PLUS report window. The right-most back page of the dialog box provides a dialog that 
allows one to obtain a plot of the estimated model (a “model plot”, sometimes also called a “stress plot” 
when the explanatory variable is a stress variable). Tables of estimates of distribution quantiles and failure 
probabilities are also available among the options in the back pages of the dialog box. These tabular and 
graphical outputs for the Snubber data common standard deviation analysis are given in Table 7 and Figure 
50.  
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Figure 50  Normal probability plot comparing the data from the new and the old Snubber design 
assuming normal distributions with a common standard deviation. 

The probability plot  in Figure 50 shows nonparametric estimates of the life time distributions for both 
snubber designs along with ML estimates of the assumed normal distributions. The lines representing the 
ML estimates of the cdfs for the two designs are parallel because of assumption of common normal 
distribution standard deviations. For the normal distribution, the slope corresponds to the reciprocal of the 
standard deviation of life, which is also a scale parameter. 

 

Table 7 Normal distribution ML estimates for the Snubber data with a common normal distribution 
standard deviation.  

Snubber Failure Data   

Maximum likelihood estimation results: 

Response units: Toaster Cycles 

Normal Distribution 

 Relationship  

1 : class      

Log likelihood at maximum point: -286.7  
 
  Parameter                  Approx Conf. Interval 

             MLE Std.Err. 95% lower 95% upper  
Intercept 974.63    89.11     800.0    1149.3 
DesignNew  86.67   114.21    -137.2     310.5 
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    sigma 458.56    57.67     358.4     586.7 
 

The table reproduced in Table 7 gives ML estimates and standard errors for an underlying dummy variable 
regression model used to distinguish between the two different designs (see Section 17.8 of Meeker and 
Escobar for a detailed description of this model). The Intercept row corresponds to the “baseline” category 
(old design in this case) giving the estimated parameter  for the corresponding distribution (mean of the 
normal distribution in this case). The DesignNew row in the table gives the ML estimate of the difference 
in mean life between the baseline and the new design.  The 95% approximate confidence interval for the 
DesignNew coefficient is [-137.2310.5]. This interval is wide enough to contain 0, indicating that the 
observed difference between the two designs could well have been caused by the random variability in the snubber life 
distributions. The last row in the output gives the estimate of the normal distribution standard deviation, which is, in 
the model, assumed to be the same for both designs. 
 
The model or “stress plot,” shown in Figure 51, plots estimates of the normal distribution density functions 
and distribution quantiles. This figure shows clearly that the observed difference in the designs is dominated 
by the variability in snubber life. 
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Figure 51 "Stress plot" showing the estimated normal distribution densities for the new and the old 
snubber designs assuming a common normal distribution standard deviation with response on the 
horizontal axis. 

 
6.4 Make life data objects for individual groups  
After comparing different groups, it is often desired to select one or more of the groups for more focused 
analysis. It is possible, for example to choose a particular group or groups and do single-distribution 
analyses for them. We will illustrate this by making a separate life data object for the New snubber design. 
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Using SLIDA qqqq Comparison of distributions life data analysisqqqq Make life data objects 
for individual groups brings up the dialog box in Figure 52. 
 

 

Figure 52 Dialog box used to choose a data subset for a new life data object 

 
For the example, we choose the Snubber.ld comparison life data object. Design is the only explanatory in 
this life data objects, so it is automatically highlighted. Then choose “New” under the list of available levels 
(or in general combinations of levels). A name for the output data object is chosen automatically when the 
level(s) or combinations of levels are chosen, but it is possible to edit this name. Clicking on “OK” or 
“Apply” will execute the function to produce the new data object. For the example, the message “Saving 
subset data object Snubber.NewDesign.ld” is printed and this data object will appear subsequently in 
the lists of single-distribution life data objects. 
 
6.5 Probability of correct selection 

When planning a life test to compare two or more distributions, an important consideration is the sample 
size needed to make the comparison. For example, when comparing two different designs (as in the snubber 
example) if one only tested two units from each design, it is unlikely that the experiment would indicate a 
statistically significant difference, even if there were a difference of practical importance. Thus we would 
not have the information needed to choose one design over the other. Correspondingly, if the experiment 
had used  10,000 units of each design, it would be highly likely that any difference of practical importance 
(or indeed, small differences that would not be important!) would be detected with high probability. 
Additionally, when comparing life distributions, one also needs to decide how long to run the test. 
Generally it will not be possible to wait until all units have failed. An important part of  planning the 
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experiment is to determine how long to run the test or, alternatively, how many of the tested units need to 
fail before a decision should be made. 

Typically, in comparative experiments, with all other things being equal, a decision would be made to 
choose the design that gives the best results in the experiment. Such a decision rule would have the largest 
probability of making the correct decision. When planning such an experiment it is important to have some 
idea about the actual probability of making a correct decision. An assessment of this probability can be 
obtained by using SLIDA qqqq Comparison of  Distributions  qqqq Probability of correct 
selection for specified test plans. 

In the dialog box in Figure 53, one specifies the assumed distribution, the number of populations to be 
compared, as well as the sample sizes (separated by commas) and the corresponding number to fail within 
each sample size. Then, as with other SLIDA dialog boxes, click “Apply” and iconify dialog box.  

 

 

Figure 53 Dialog box requesting a probability of correct selection comparison of three different 
proposed comparison life tests. 

Depending on how many simulations have been requested, the complete simulation may take a substantial 
amount of  time to run. Periodic messages will be printed in the report window however, to give an 
indication of the simulation’s progress. Separate simulations are required for each sample size/number of 
failures pair and the computational time is approximately proportional to the number of failures. Figure 54 
illustrates the output, giving a Probability of Correct Selection curve for each combination of sample size 
and number of failures, as a function of the standardized difference d. See Escobar, Pascual, and Meeker 
(2000) for more information on how to choose d. 
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Figure 54 Plot showing the probability of correct selection as a function of the standardized 
difference between the populations being compared. 

 

The jaggedness in the lines is due to the limited number of simulations that were done in this example, but 
such simulations are quick and adequate for most purposes. If smoother curves are desired, the simulation 
sample size can be increased to somethoong like 3000. 

7. Simple Regression (ALT) Life Data Analysis 
This Chapter describes methods for analyzing life data when there is a single explanatory variable. 
Technical background and further examples illustrating the statistical methods used here are given in 
Chapter 17 of Meeker and Escobar (1998). A common application of the methods in this chapter arises in 
accelerated testing where test units are, for example, tested at high temperature with the purpose of 
obtaining reliability information in a timely manner. Models and methods for accelerated testing are 
described in detail in Nelson (1990) and Chapters 18 and 19 of Meeker and Escobar (1998). Chapter 8 
extends the methods of this chapter, allowing for more than one explanatory variable. 
 
7.1 Scatter plot of censored data 
One should always look first at available data through graphical displays. For single-variable accelerated 
test data, a scatter plot will provide useful information. To illustrate the tools in this section, we use the 
Device-A data from Hooper and Amster (1990), reanalyzed in Section 19.2 of Meeker and Escobar (1998). 
In order to make a scatter plot of the Device-A data, use SLIDA qqqq Simple regression (ALT) data 
analysis qqqq Censored data scatter plot to bring up the dialog box shown in Figure 55. Then choose 
the one of the life data objects from the list. We use the Device-A life data object in this example (only 
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those life data objects with explanatory variables appear in the list). There is only one explanatory variable 
in the Device-A data object, so it is chosen automatically. Then choose the axis scales for the response and 
the explanatory variable. Linear response and linear explanatory variable axes are the defaults, but log and 
Arrhenius axes are chosen for this example, corresponding to the physically-suggested lognormal-Arrhenius 
accelerated lifetime model, described and illustrated in Chapters 18 and 19 of Meeker and Escobar (1998). 

 

 

Figure 55 Dialog box requesting a censored-data scatter plot of the Device-A data. 

 
Finally, click on “Apply” to produce the Arrhenius plot of the data shown in Figure 56. 
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Figure 56 A censored-data scatter plot of the Device-A data. 

Notice the nonlinear Arrhenius axis for temperature. The open upward-pointing triangles in the plot indicate 
right-censored observations. The number of censored observations at each level of temperature was added 
manually with S-PLUS GUI commands. For the Device-A data (as in most examples having heavy 
censoring), the censoring makes it difficult to assess the adequacy of the linear relationship between log 
time and transformed temperature. Still, however, there is nothing in the plot to suggest that the relationship 
does not provide a reasonable description of the relationship. 

 

7.2 Group individual probability plots 

After loooking at a scatter plot of data from a single-variable accelerated life tests, the next step in the 
analysis is usually to make an indivdual probability plot of the data at each level of the accelerating variable 
(e.g., at each temperature for the Device-A data). Such a plot can be made by using  SLIDA qqqq Simple 
regression (ALT) life data analysisqqqq Probability plot and ML fit for individual 
conditions to request the dialog box in Figure 57. Then one chooses the life data object and distribution 
(Lognormal was used in this example). Clicking “OK” or “Apply” produces Table 8 and the multiple 
probability plot in Figure 58. 
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Figure 57 Dialog box requesting a lognormal probability plot for the individual temperature levels in 
the Device-A accelerated test. 
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Figure 58 Lognormal probability plot showing the individual nonparametric and parametric 
estimates of life at the different temperatures in the Device-A accelerated life test. 

Figure 58 shows that the lognormal distribution fits the data at each level of temperature. The slopes of the 
lines (corresponding to the reciprocal of the lognormal shape parameters) vary somewhat (as expected from 
variability in the data), but not systematically. Table 8 summarizes the lognormal distribution ML 
estimation at each individual level of temperature for the Device-A accelerated life test. At 10 degrees C, 
there were no failures so no nonparametric or ML estimates could be computed. 

Table 8 Tabular output summarizing lognormal distribution ML estimation at each individual level 
of temperature for the Device-A accelerated life test. 

[1] "Skipping 10 because too few failures" 
 
 Device A data  
 
Maximum likelihood estimation results: 
 
Response units: Hours 
 
Lognormal Distribution 
  Temp Likelihood    mu  se_mu  sigma se_sigma  
1   10         NA    NA     NA     NA       NA 
2   40    -115.46 9.815 0.4221 1.0083   0.2737 
3   60     -89.72 8.644 0.3474 1.1876   0.3167 
4   80    -115.58 7.084 0.2087 0.8046   0.1553 
 
Total likelihood = -320.8  
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7.3 Group probability plot with common shape (slope) parameter 

Many accelerated life test models relate the scale parameter of the life-time distribution (location parameter 
of the log life distribution) to the accelerating variable but have the shape of the life-time distribution (scale 
parameter of the log-life-time distribution) the same over all levels of the accelerating variable. Some 
physical-failure models, such as the Arrhenius relationship, suggest such a statistical model. In order to 
check the adequacy of such a model, it is useful to fit the candidate distribution to the data with a common 
shape (slope on a probability plot) assumption. This analysis is similar to that in the comparison-of-
distributions example in Section 6.3, with Temperature being used as a class variable. This analysis can be 
done with SLIDA qqqq Simple regression (ALT) life data analysisqqqq Prob plot and ML fit for 
indiv cond: common shapes (slopes). This dialog box, shown in Figure 59, is very similar to that in 
Figure 57. 

 

 

Figure 59 Dialog box requesting ML estimates at the different temperatures in the Device-
A accelerated life test, with lognormal shape parameters constrained to be the same. 
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Specify the life data object and the distribution and click “OK” or “Apply”  to obtain the multiple 
probability plot in Figure 60. 
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Figure 60 Lognormal probability plot showing ML estimates at the different temperatures 
in the Device-A accelerated life test, with lognormal shape parameters constrained to be the 
same. 

Note the parallel lines in Figure 60, due to the common � (standard deviation of log life) assumption in the 
fitted model. 

The tabular output in Table 9 summarizes the lognormal distribution ML estimation for the Device-A 
accelerated life test. The estimate b0 is the estimate of �, the median of log life for the baseline of 40 
degrees C (there were no failures at 10 degrees C, so these data are not used in the present analysis). The 
estimates corresponding to Temp60 and Temp80 give the estimated differences µ40-µ60 and µ40-µ80. As 
expected, these latter two estimates are negative because of shorter life times at the higher temperatures. 
The tabular output in Table 9 can be used to compare this model fit with the unconstrained model fit to see 
if there is strong evidence for a departure from the constant-slope assumption. Figure 60 provides a visual 
assessment of this assumption. 

 

Table 9 Tabular output summarizing lognormal distribution ML estimation for the Device-
A accelerated life test.  

Device A data   
 
Maximum likelihood estimation results: 
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Response units: Hours 
 
Lognormal Distribution 
 
  Relationship  
1 : class      
 
Log likelihood at maximum point: -321.5  
 
  Parameter               Approx Conf. Interval 
           MLE Std.Err. 95% Lower 95% Upper  
    b0  9.7543   0.2465    9.2711   10.2374 
Temp60 -1.2330   0.3119   -1.8443   -0.6217 
Temp80 -2.6634   0.3484   -3.3463   -1.9806 
 sigma  0.9656   0.1320    0.7386    1.2623 

 

 

One can compare the loglikelihoods from fitting the previous two models in order to see if the differences 
among the shape parameters at the three different temperature levels could be explained by random 
variability. In a formal maner we compute  –2[(-320.8 -321.5)] = 1.4, which is small relative to 5.99, the .95 
quantile of a chi-square distribution with 2 degrees of freedom (the unconstrained model had six parameters 
while the constrained model had four and thus the difference in dimension is two). This numerical result 
suggests that there is not strong evidence of differing slopes. 

In addition to the table of ML estimates of the distribution parameters, one can also request a table of failure 
probabilities or quantiles for any of the levels of the explanatory variable in the data by using the options on 
the Tabular Output of the dialog box in Figure 59.  

 

7.4 Fitting simple regression and accelerated life test models 

Accelerated life tests are often conducted for the purpose of using data at higher-than-usual levels of some 
explanatory variable to make predictions of life at lower typical or use levels of that variable. A model is 
used to describe the effect that the explanatory variable will have on life. For example, when temperatutre is 
used to accelerate a failure mechanism related to a chemical reaction, the Arrhenius relationship is often 
suggested as a model to describe the effect that temperature will have on life. The data can be used to 
estimate the parameters of this model, as described in Section 19.2 of Meeker and Escobar (1998). Use 
SLIDA qqqq Simple regression (ALT) life data qqqq Probability plot and ML fit of a 
regression (acceleration) model to bring up the dialog box in Figure 61.  
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Figure 61 Dialog box used to request a probability plot showing the ML fit of the 
lognormal/Arrhenius acceleration model to the Device-A data. 

 
For many single-variable accelerated life tests, the model to be used is initially suggested by previous 
experience or physical theory.  For the Device-A example, the well-known Arrhenius relationship will be 
used to describe the relationship between life and temperature, as shown on the dialog box. One can also 
specify additional levels of temperature at which to compute and plot estimates of life and associated 
confidence intervals. As with other dialog boxes, various options for customizing the plots and for 
requesting tabular output are available in the back pages of the dialog box.  
 
Options on the “Stress Plot” page of the dialog box, shown in Figure 62, allows one to request and 
customize a plot of the life versus stress along with the other analyses (hours to failure as a function of 
temperature on log/Arrhenius scales for the Device-A example). 
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Figure 62 Dialog box showing the options on the "stress plot" dialog page. 

 
When all of the requested options have been selected, click on “Apply.” This will produce the multiple 
probability plot in Figure 63, showing the lognormal/Arrhenius model estimates of fraction failing as a 
function of time at the diferent levels of temperature in the original  (including 10 Degrees C, where there 
were no failures) and the Stress plot in Figure 64.  
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Figure 63 Lognormal probability plot showing the lognormal/Arrhenius model fit to the Device-A 
data with an extrapolation to the use conditions of 10 degrees C, including approximate pointwise 
95% confidence intervals. 

 
Table 10 gives a summary of the ML regression output, similar to what one would obtain from a standard 
least squares regression output. 
 

Table 10 Maximum likelihood estimation results for the lognormal/Arrhenius model fit to the Device-
A data 

 Device-A ALT Results   
 
Maximum likelihood estimation results: 
 
Response units: Hours 
 
Lognormal Distribution 
 
  Relationship  
1 : Arrhenius  
 
Log likelihood at maximum point: -321.7  
 
  Parameter                  Approx Conf. Interval 
               MLE Std.Err. 95% Lower 95% Upper  
Intercept -13.4686  2.88719  -19.1274   -7.8098 
     Temp   0.6279  0.08284    0.4655    0.7902 
    sigma   0.9778  0.13265    0.7495    1.2756 
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Figure 64 Stress plot on Arrhenius paper showing the estimated failure-time densities as a function of 
temperature. 

 
There is nothing in either of these plots to indicate any serious departure form the fitted model. Of course it 
should be emphasized that just because the data fits the model well within the range of the data does not 
imply that one can safely extrapolate out side of the range of the data (10 degrees C for the Device-A 
example). The justification for the extrapolation comes from the Arrhenius rate-reaction model from 
physical chemistry. If this model does not adequately describe the effect of temperature on the underlying 
degradation mechanism, then seriously incorrect extrapolations could result. 
 
7.5 Make life data objects for individual groups  
 In many applications, under certain circumstances, it will be desired to select one or more of the groups of 
regression data set for more focused analysis. It is possible, for example to choose a particular level  of 
levels of an accelerating variable and do single-distribution analyses for them. Alternativley, one may want 
to delete one or more subsets for a data set either as a form of sensitivity analysis or because the data need 
to be deleted because they are incorrect.  We will illustrate this by making a sunset life data object for 
Mylarpoly.ld life data object. As shown in Section 19.3.1 of Meeker and Escobar (1998), the specimens 
tested at 361.4 kV/mm failed from a failure mode different than those at other levels of voltage stress 
because voltage stress was too high. It is thus appropriate to drop these data from the analysis. Using 
SLIDA qqqq Simple regression (ALT) life data qqqq Make life data objects for individual 
groups brings up the dialog box like that shown in Figure 65. 
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Figure 65 Dialog box requesting the creation of a subset data object for the mylarploy data, omitting 
the 361.4 kV data. 

 
For the example, we choose the mylarpolyld comparison life data object. The voltage stress variable 
kV.per.mm is the only explanatory in this life data objects, so it is automatically highlighted. Then choose 
the desired levels (all except 361.4 in this case) under the list of available levels (or in general combinations 
of levels). A name for the output data object is chosen automatically when the level(s) or combinations of 
levels are chosen, but it is possible to edit this name. In this example, because so many levels were chosen, 
the automatic name is a bit long, so it was edited to read mylarpoly.subset.ld. After clicking on “OK” or 
“Apply” the new life data object is created, we get the message “Saving subset data object 
mylarpoly.subset.ld,” and this life data object will appear in subsequent lists of accelerated life test or 
regression life data objects. 
 

8. Multiple regression (ALT) life data analysis 
The methods illustrated in Section 7 are easily extended to allow one to fit failure time regression models 
with two or more explanatory variables. The methods presented here provide useful extensions to the 
multiple regression methods covered in a standard course in the subject of multiple regression analysis, 
allowing for non-normal distributions and censoring. To illustrate the methods for failure-time regression, 
we will use the tantalum capacitor life data (data object Tantalum.ld) from Singpurwalla, Castellino, and 
Goldschen (1975). These data were also analyzed in Section 19.3.3 of Meeker and Escobar (1998). The 
tabular summary of these data in Table 11 was obtained by using SLIDA 
qqqqMake/summary/view/edit data object qqqqSummary/view data object. 
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Table 11 Summary of the tantalum capacitor life data object 

Summary of: Tantalum Capacitor Data 
 
Number of rows in data matrix= 48  
Response units:  Hours  
Response minimum:  20  
Response maximum:  37000  
Number of cases in data set= 2204  
Number of exact failures in data set= 40  
Number of right censored observations in data set= 2164  
No truncation information 
 
Summary of numeric columns in X matrix:   
         min  max  mean     sd     cv  
   Volts  35 62.5 51.98  9.897 0.1904 
DegreesC   5 85.0 42.50 36.349 0.8553 
 
List of unique X values (or combinations)  
  Volts DegreesC min-time max-time #exact #rcen  
1  35.0       85       20    37000      4   996 
2  40.6       85       20    27000      4   196 
3  46.5       85      800     2800      2    48 
4  51.5       85      500    10700      4    49 
5  46.5       45      100    27300      6   496 
6  46.5        5     1000     1000      1   174 
7  62.5        5       25    12500     18   156 
8  57.0       45     8900     8900      1    49 

 
8.1 Censored data pairs plot 
As described earlier, data analysis should begin with exploration using graphical tools. The dialog box in 
Figure 66, obtained from SLIDA qqqq Multiple regression (ALT) life data qqqq Censored data pairs plot, 
allows the user to plot all pairs of variables in one “matrix plot” (also known as a “pairs plot” in S-PLUS).  
 

 

Figure 66 Dialog to request a censored data pairs plot. 

 
Figure 67 shows a pairs plot for the tantalum capacitor data. As shown in the simple regression example 
with the Device-A data, the censoring makes it more difficult to interpret a scatter plot. The Volts versus 
Degrees C plot shows the complicated nature of the experimental design for this example. 
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Figure 67 Censored data pairs plot show the tantalum capacitor life versus voltage and temperature. 

 
 
8.2 Censored data scatter plot 
The censored data scatter plot dialog box obtained with SLIDA qqqq Multiple regression (ALT) life data qqqq 
Censored data scatter plot is exactly the same as that shown in Figure 55, obtained with  SLIDA qqqq 
Simple regression (ALT) data analysis qqqq Censored data scatter plot. As before the dialog allows one 
to request a single scatter plot of the response versus one explanatory variable, with an option to transform 
either or both of the data axes. 
 
8.3 Probability plot and ML fit for individual conditions 

The dialog obtained from SLIDA qqqq Multiple regression (ALT) life data qqqq Probability plot and ML fit 
for individual conditions, shown in Figure 68 allows one to request separate analyses for all combinations 
of experimental variable levels in one’s data set, with all of the results plotted on one probability plot. 
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Figure 68 Dialog box requesting a probability plot showing individual nonparametric estimates for 
each experimental factor level combination on lognormal paper. 

 
After the dialog box appears, choose the life data object (only life data objects with explanatory variables 
appear in the list), a distribution, and all or some of the explanatory variables. Then click “Apply” or “OK,” 
producing a probability plot like that in Figure 69. 
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Figure 69 Probability plot showing individual nonparametric estimates for each 
experimental factor level combination on lognormal paper. 

 
By using the Plot Options page of the dialog box in Figure 68, it is possible to suppress the 
printing of the legend or have it print on a separate page. There is a considerable amount of 
variation among the slopes of the ML estimate lines in Figure 69. This is due to the small number 
of failures at some combinations of voltage and temperature. Corresponding numerical results are 
given in Table 12. NAs are shown for test conditions for which there were not enough failures to 
compute ML estimates. 
 

Table 12 Individual ML estimates for the different tantalum capacitor life test conditions 

Tantalum Capacitor Data  
 
Maximum likelihood estimation results: 
 
Response units: Hours 
 
 Distribution 
label,        Log likelihood    mu  se_mu  sigma se_sigma  
135  Volts;85 DegreesC         -60.45 46.57 17.297 13.599   6.3819 
2 40.6 Volts; 85 DegreesC         -57.99 25.10  7.005  7.247   3.2394 
3 46.5 Volts;85 DegreesC      -24.10 10.73  1.892  1.591 9949 
4 51.5 Volts;  85 DegreesC         -50.28 14.67  2.759  3.772   1.6760 



 71 

5 46.5 Volts;  45 DegreesC         -92.88 22.14  4.533  5.273   1.9315 
6 46.5 Volts;  5 DegreesC             NA    NA     NA     NA       NA 
7  62.5 Volts;  5 DegreesC        -217.19 15.47  1.513  4.809   0.9950 
8   57  Volts; 45 DegreesC             NA    NA     NA     NA       NA 
 
Total log likelihood= -502.9  

8.4 Probability plot and ML fit for individual conditions: common shapes (slopes) 
The methods described in this section are similar to those described in Sections 6.3 and 7.3, except that 
more than one explanatory variable can be specified for the analysis. Using  SLIDA qqqq Multiple 
regression (ALT) life data qqqq Prob plot and ML fit for indiv cond: common shapes (slopes) brings up 
a dialog box like that in Figure 70. This dialog box is very much like that obtained with SLIDA qqqq Simple 
regression (ALT) life data analysisqqqq Prob plot and ML fit for indiv cond: common shapes (slopes), 
except that one is allowed to choose more than one explanatory variable (including categorical variables, 
known as “factors” in S-PLUS). Using maximum likelihood, a model is fit that allows the scale parameter 
of log-location-scale distributions (location parameters of location-scale distributions) at the different 
combinations of experimental conditions to vary, but constrains the shape (slope) parameter of the log-
location distributions (scale parameters of location-scale distributions) to be the same in the model. 
 

 

Figure 70 Dialog box to request, for the tantalum ALT data, a probability plot and maximum 
likelihood estimation for individual combinations of voltage and temperature, but with a common 
lognormal shape parameter. 

 
As with previous similar dialog boxes, choose the life data object, a distribution, the explanatory variables 
to be used, and then click “Apply” or OK, giving the probability plot shown in Figure 71. 
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Figure 71 Tantalum ALT data probability plot and maximum likelihood estimation for individual 
combinations of voltage and temperature, but with a common lognormal shape parameter. 

 
8.5 Probability plot and ML fit of a regression (acceleration) model  

This section describes the fitting a multiple regression model. The dialog for doing this, while similar to the 
dialog for fitting a one-variable relationship, differs  significantly. First, the model specification is more 
involved because more than one variable/relationship combination has to be specified. Relatedly, it is also 
more complicated to specify additional conditions (“new.data” in S-PLUS jargon) at which to do 
evaluations of distribution properties like failure probabilities and quantiles. Additionally, there is no option 
on the dialog for a “stress plot.” Instead, after a model is fit, the user can make a “conditional stress plot,” 
as described in the next Section 8.6. 
 
Using SLIDA qqqq Multiple regression (ALT) life data qqqq Probability plot and ML fit of a regression 
(acceleration) model brings up a dialog box like the one in Figure 72. In this box, one chooses the life data 
object, a distribution (or the six-distribution option) and which explanatory variables to use. Then one 
moves to the model page of the dialog to specify the model (i.e., life-explanatory variable relationships). To 
illustrate these features, we continue with the tantalium capacitor example.  
 
After the Tantalum.ld life data object has been chosen, one should choose the distribution and explanatory 
variables. The Plot Option and Tabular Output pages of the dialog box will show (when output options are 
actually selected) lists of explanatory variable combinations from which one can choose one or more 
combinations for particular focus. For example, as with simple regression analyses, one can ask for 
confidence intervals for ML estimates of the cdf (fraction failing as a function of time) on probability plots 
and for tables of distribution quantiles or failure probabilities at specified explanatory variable 
combinations. It is also possible to input user-specified combinations of levels of  the explanatory variables 
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(“new data” in S-PLUS jargon) other than those implied by  the levels in the input data. This is illustrated in 
the dialog box shown in Figure 72 where the combinations 30 Volts is combined with 70 and 80 degrees C 
were specified. Note that each combination entered is separated by a comma, but that variables within a 
combination are separated by semicolons. When entering these numbers it is sometimes convenient to use 
the right-click Zoom option. The “Save results in:” box gets filled and becomes editable after a the life-
explanatory variable relationships are chosen on the Model page. 
 

 

Figure 72 Basic page of the multiple regression dialog box requesting a probability plot showing a 
fitted lognormal/inverse power/Arrhenius regression model to the tantalum capacitor data. 

 
On the Model page of the dialog box (shown in Figure 73), the user first chooses the relationships for each 
of the variables (except that categorical variables---factors in S-PLUS jargon---are automatically chosen to 
be class variables). This choosing process is initiated by clicking on the “relationships” button. For the 
example below, the standard log (equivalent to inverse power rule) and Arrhenius relationships were chosen 
for the voltage and temperature variables, respectively.  
 
As with previous dialogs for requesting ML estimation, a Tabular Output page allows the user to request 
tables of distribution quantiles or failure probabilities for specified levels or combinations of levels of the 
explanatory variables. 
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Figure 73 Model-specification page of the multiple regression dialog box requesting a probability plot 
showing a fitted Weibull/inverse power/Arrhenius regression model to the tantalum capacitor data. 

 
The Tabular Output page of the dialog box in Figure 72, shown in Figure 74, lists the available levels of the 
explanatory variables (this list is full only if the explanatory variables have been chosen on the basic page 
and if one or the other of the tabular output options is checked). The user-inputted values appear at the 
bottom of the list. In this case, only the two user-inputted values have been chosen for generating the output 
tables. 
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Figure 74 Tabular Output page of the multiple regression dialog box requesting a probability plot 
showing a fitted Weibull/inverse power/Arrhenius regression model to the tantalum capacitor data. 

Clicking on “OK” or “Apply” produces the probability plot in Figure 75 and the S-PLUS tabular output for 
this example shown in Table 13. Table 13 gives the usual regression output as well as the tabular output for 
30 Volts and 5 Degrees C. 

Table 13 ML estimates for the lognormal distribution acceleration model fit to the tantalum 
capacitor life test data 

Maximum likelihood estimation results: 
 
Response units: Hours 
 
Lognormal Distribution 
 
         Relationship  
1 Volts: Log          
2 DegreesC: Arrhenius 
 
Log likelihood at maximum point: -541.3  
 
  Parameter                  Approx Conf. Interval 
               MLE Std.Err. 95% Lower 95% Upper  
Intercept  87.5605  13.5007    61.100  114.0215 
    Volts -19.8815   4.5457   -28.791  -10.9721 
 DegreesC   0.3003   0.2103    -0.112    0.7125 
    sigma   6.0175   0.8410     4.576    7.9137 
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Lognormal Distribution Failure Probability Estimates 
From Tantalum Capacitor Data at  30Volts;5DegreesC 
with Lognormal MLE and Pointwise Approximate 95% Confidence Intervals 
 
  Hours       Fhat   Std.Err.  95% Lower 95% Upper  
   5000 0.00003444 0.00006823 7.092e-007  0.001670 
  10000 0.00005556 0.00010688 1.280e-006  0.002406 
  20000 0.00008851 0.00016542 2.270e-006  0.003440 
  50000 0.00016067 0.00028926 4.713e-006  0.005449 
 
 
                 Quantile Estimates 
From Tantalum Capacitor Data at  30Volts;5DegreesC 
Lognormal MLE and Pointwise Approximate 95% Confidence Intervals 
 
      p    Quanhat   Std.Err. 95% Lower  95% Upper  
  0.001    1058114 3.021e+006      3930 2.849e+008 
  0.005   23380061 6.909e+007     71378 7.658e+009 
  0.010  104912433 3.173e+008    279421 3.939e+010 
  0.050 6335885059 2.076e+010  10302254 3.897e+012 
 

Figure 75 shows the probability plot for this example with lines also drawn for the user-specified 
combinations of 30 Volts and 5 Degrees C and 30 Volts and 10 Degrees C. The legend is covering some of 
the plotted information, so one might want to exercise the Plot Option to suppress or move the legend to a 
new page. Note that when the model is fit, the results are saved in a “results object” named 
Tantalum.groupm.Lognormal.VltsLog.DgrCArrh. Note that the name of the results object contains the life 
data object prefix, distribution name, and explanatory variable/relationship combinations, relieving the user 
from the chore of specifying such names and making it easier to distinguish among different results objects 
when requesting subsequent analyses (e.g., residual plots, conditional stress plots, and sensitivity analyses). 
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Figure 75 Probability plot showing a fitted lognormal/inverse power/Arrhenius regression model to 
the tantalum capacitor data. 

Table 14 shows ML estimates of lognormal distribution failure probabilities for tantalum capacitors at 
30Volts and 10DegreesC. Note that the confidence intervals for failure probabilities are very wide. 

Table 14 ML estimates of lognormal distribution failure probabilities for tantalum capacitors at 
30Volts;10DegreesC 

Lognormal Distribution Failure Probability Estimates 
From Tantalum Capacitor Data at  30Volts;10DegreesC 
with Lognormal MLE and Pointwise Approximate 95% Confidence Intervals 
 
  Hours       Fhat   Std.Err.  95% Lower  95% Upper  
     20 5.842e-007 1.414e-006 5.090e-009 0.00006704 
     50 1.247e-006 2.884e-006 1.340e-008 0.00011604 
    100 2.180e-006 4.875e-006 2.721e-008 0.00017458 
    200 3.762e-006 8.140e-006 5.420e-008 0.00026114 
    500 7.592e-006 1.573e-005 1.308e-007 0.00044060 
   1000 1.272e-005 2.554e-005 2.490e-007 0.00064978 
   2000 2.105e-005 4.095e-005 4.651e-007 0.00095205 
   5000 4.018e-005 7.505e-005 1.032e-006 0.00156114 
  10000 6.455e-005 1.170e-004 1.847e-006 0.00225073 
  20000 1.024e-004 1.803e-004 3.247e-006 0.00322065 
  50000 1.849e-004 3.136e-004 6.662e-006 0.00510952 
 
8.6 Conditional stress plot 
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When a fitted regeression model has more than one explanatory variable, it is still possible to make a “stress 
plot” showing time as a function of stress (or other explanatory variable). In order to do this, however, it is 
necessary to specify fixed values of the other explanatory variables. Using SLIDA qqqq Multiple regression 
(ALT) life data qqqq Conditional stress plot brings up the dialog box in Figure 76. When the dialog box 
appears, it will remember the most recent results object (if the analysis was done in the current session). In 
this case the remembered name is Tantalum.groupm.Lognormal.VltsLog.DgrCArrh. Suppose now that 
design engineers want to estimate the life distribution of the capacitors when operating at 35 Degrees C for 
different levels of voltage.  After specifying this information and clicking on “Apply” or “OK,”  produces a 
plot like that in Figure 77. 

 

 

Figure 76 Dialog box for a conditional stress plot. 
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Figure 77 Conditional stress plot showing estimated tantalum capacitor life versus voltage for 
temperature fixed at 35 degrees C. 

 
8.7 Sensitivity analysis plot 
Generally when fitting several alternative models to data, among the models that fit the data well, there is 
usually relatively little difference in the results from the fitted model, as long as one is working within the 
range of one’s data. SLIDA has a powerful tool that allows one to compare directly alternative analyses 
with different underlying model assumptions. Using SLIDA qqqq Multiple regression (ALT) life data 
analysis qqqq Sensitivity analysis plot brings up the  dialog box in Figure 78. Similar to the Conditional 
stress plot dialog, the last results structure used in the current session is remembered, but any of the other 
existing results structures could be selected instead. The primary model purturbation used in the sensitivity 
analysis is the relationship assumption relating a continuous explanatory variable to life. This is done by 
fitting separate models using several different choices for the  parameter in the Box-Cox family of 
transformations (the default values are –1 , –.5, 0, .5, 1, 1.5, and 2) on the chosen numerical explanatory 
variable. The output is a plot of the ML estimate of a selected quantile (or quantiles) as a function of the 
Box-Cox parameter (1 is the same as a linear transformation, .5 is the same as a square root relationship, 0 
corresponds to a log relationship, and –1 corresponds to a reciprocal relationship).  
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Figure 78 Dialog box requesting sensitivity analysis for the assumed relationship between tantalum 
capacitor life and voltage at 30 volts and 35 degrees C. 

 
 
If only one quantile and one distribution are used in the comparison (the default), pointwise confidence 
intervals for the quantile are also plotted, as shown in Figure 79  
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Figure 79 Sensitivity analysis plot showing the effect on tantalum capacitor life of the assumed 
relationship between life and voltage at 30 volts and 35 degrees C. 

 
Also provided is a plot, like that shown in Figure 80, of the profile likelihood function for the Box-Cox 
parameter. This plot allows an assessment of the statistical power to discriminate among the different 
relationship parameters. Note that if there are only two levels of the transformed explanatory variable, the 
profile likelihood will be constant because there is no information in the data to discriminate among 
different transformations.  
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Figure 80 Profile plot showing the relative likelihood (probability) of the tantalum capacitor data as 
a function of the voltage relationship Box-Cox parameter. 

In this case, the profile likelihood suggests that a transformation with the Box-Cox parameter less than 5.−  

is not consistent with the data. Values ranging from 5.− to larger than 0.2  do, however, seem to be 
consistent with the data. Based on previous, transformations used typically used for similar products have 
been 0 (corresponding to a log transformation). To be conservative, however, values between 1 and 

5.1 might be used in reporting a plausible range of results. 

 
 
8.8 Make life data objects for individual groups  
It may, under certain  circunstances be desired to select one or more of the groups of regression 
data for more focused analysis. It is possible, for example to choose a particular combination of 
levels of explanatory variables and do separate analyses for them. We will illustrate this by 
making a separate life data object for the new design within the NewSpring life data object. 
Using SLIDA qqqq Simple regression (ALT) life data qqqq Make life data objects for individual 
groups brings up the dialog box in Figure 81. 
 



 83 

 

Figure 81 Dialog box requesting the creation of a single distribution life data object for the New 
Design data in the NewSpring data. 

 
After clicking on “OK” or “Apply” the new life data object is created, we get the message “Saving subset 
data object NewSpring.NewMethod.ld,” and this life data object will appear in subsequent lists of single 
distribution life data object.  
 

9. Regression Residual Plots 
In any kind of statistical modeling, it is important to look for departures from models being fitted to data. 
This is especially true for regression models in which explanatory variables like temperature and humidity 
are used to describe the characteristics of a response variable like life time. Because it is possible to specify 
most model assumptions in terms of characteristics of model residuals (deviations between the response and 
some definition of expected or typical response), a useful method of diagnostic checking is to examine a 
model’s residuals, usually with various graphical displays. Examples illustrating the use of and some 
technical details concerning the definition of residuals for censored data are given in Section 17.6 of 
Meeker and Escobar (1998).  
 
9.1 Residuals versus fitted values 
It is common practice to plot residuals versus fitted values. Such a plot is useful for detecting departures 
from the structural model as well as model departures like nonconstant spread. Using SLIDA qqqq 
Regression residual analysis qqqq Residuals versus fitted values brings up a simple dialog box, 
shown in Figure 82. 
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Figure 82 Dialog box requesting a plot of the regression residuals for the laminate panel data versus 
fitted values. 

All one needs to do it to choose a results object (a list of all such objects in the user’s data base is provided) 
and click on “Apply” or “OK” to request a plot of regression residuals versus fitted values like that shown 
in Figure 83 for the laminate panel data. 
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Figure 83 Plot of the regression residuals for the laminate panel data versus fitted values. 

9.2 Residuals versus possible explanatory variables 

The residual from a regression model should not have a strong relationship with any other external variable. 
If such a relationship is discovered, it suggests that the variable should have been included into the model. 
To illustrate this we return to the tantalum data used in Section 8.5, but using a model in which life is 
related to voltage only, omitting the temperature variable (this will be referred to as the reduced model). 
Using SLIDA qqqq Regression residual analysis qqqq Residuals  versus possible explanatory 
variables brings up the dialog box shown in Figure 84.  
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Figure 84 Dialog box requesting a plot of residuals versus an explanatory variable. 

The results object for the reduced model is chosen (actually it is remembered as the default choice if the 
model was fit just before bringing up the dialog). Then DegreesC is chosen as the variable against which to 
plot.  Clicking on “Apply” or “OK”  gives the plot shown in Figure 85. 

 

 

Figure 85 Residuals for the Lognormal/inverse power relationship model for the tantalum capacitor 
data plotted against the omitted variable Degrees C . 

For the full model fitted in Section 8.5, the estimated Arrhenius coefficient (activation energy in eV) was .3, 
a value that is physically much larger than would be expected. This estimate, however, was not statistically 
different from zero. Nevertheless, physically we expect temperature to have an effect and would be inclined 
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to keep temperature in the model. The residual plot in Figure 86, showing decreasing life for increasing 
temperature, reinforces this conclusion. 
 

9.3 Residuals versus observation number 
In some studies, data are obtained over time and the order of the cases in the resulting data set may have 
some importance. For example, if units are tested sequentially, one at a time, on a machine to do fatigue 
cycling, it is possible that some underlying “lurking factor”  has an effect on the response. For example, 
there may be gradual drift of machine settings or  an effect due to changes in ambient temperature or other 
environmental conditions. An analyst can check for such underlying time-dependent changes in a process 
by plotting residuals versus time order of the observations. Of course, in order for such a plot to be 
meaningful, it is necessary that the case ordering in the data set correspond to the actual time ordering that 
units were tested. If (as is often the case) available data are ordered according to observed failure time 
(which might be the natural ordering for commonly-used simultaneous testing) or according to explanatory 
variable levels, the potentially important time-sequence information is lost and plots made versus time order 
would probably have no meaning. 
 
A plot of residuals versus observation number is easily obtained by using  SLIDA qqqq Regression 
residual analysis qqqq Residuals versus observation number and choosing the desired regression 
results object from the list presented in the dialog. 
 
9.4 Residual probability plot 
As described in Section 17.6 of Meeker and Escobar (1998), residuals from a regression model, even with 
censoring, can be examined with the use of standard probability plotting methods. Residual probability plots 
are useful for assessing the reasonableness of particular distribution choice for a regression model. The 
multiple probability plots used in Sections 7 and 8 are useful for making this assessment at individual 
conditions. After fitting an overall model, however, plotting the residuals provides more information on the 
adequacy of the overall distribution.  
 
SLIDA qqqq Regression residual analysis qqqq Residual probability plot brings up a dialog box 
like that shown in Figure 86, to request a residual probability plot of the residuals from a previously 
estimated model. Choose the desired regression results  structure an click on “OK” or “Apply.” 
 

 

Figure 86 Dialog requesting a probability plot of the regression residuals for the laminate panel data. 

 
Figure 87 is a residual  probability plot for the laminate panel data. 
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Figure 87 Probability plot of the regression residuals for the laminate panel data. 

 
 
 
 

10. Planning an Acccelerated Life Test (ALT) 
Accelerated life tests are complicated, expensive experiments. Careful planning of such experiments is 
important. SLIDA provides tools for the evaluation and comparison of proposed accelerated life test plans. 
To use these tools, on must specify model information (or planning information) and the proposed test 
plan(s). 
 
10.1 Specification of ALT plan values 
Using SLIDA qqqq Plan an accelerated life test qqqq Specify ALT model information (planning 
values)  brings up a dialog box like the one shown in  Figure 88.  
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Figure 88 Beginning dialog box for specifying ALT-planning values. 

 
As an example, we will specify the planning values corresponding to the adhesive bond used in Example 
20.1 on page 535 of Meeker and Escobar (1998). On the first page of the dialog box, change “last.altpv” to 
the more descriptive AdhesiveBond.pv, choose a distribution (Weibull in this case), a relationship 
(Arrhenius) and edit the time units cell to the more descriptive “Hours,” as shown in  Figure 88. Note that 
the distribution name was automatically inserted into the “Save results in” cell and the stress units cell was 
changed to Degrees C (the object name is too large to see completely without using the right-click-Zoom 
option in the cell). 
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Figure 89 Completed Basic page of the Get accelerated life test plan values dialog box. 

After the Basic page of the dialog box has been completed, move to the Parameters page. There are two 
different options for specifying the ALT planning information corresponding to a quantile line or lines on 
the linearized life-stress relationship. One can specify two points or a point and a slope. For the adhesive 
bond example, the responsible engineers in the past had used a Weibull distribution to model the life of 
adhesives and the Weibull shape parameter was typically in the neighborhood of 1.667. In addition, for 
purposes of planning, the .001 quantile of the life distribution at 50 degrees C is specified as 183 days (or 
equivalently, the failure probability at 50 degrees and 183 days is specified to be .001). Additionally, the 
slope parameter in the life-temperature relationship is the effective activation energy (.7265 in eV). The 
completed dialog box is shown in  Figure 90. Click on “OK” or “Apply” to create the ALT planning value 
object. 
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Figure 90 Completed Parameter page of the Get accelerated life test  planning values dialog box. 

 
10.2 Specification of an ALT test plan 
In order to specify an ALT plan, use SLIDA qqqq Plan an accelerated life test qqqq Specify ALT test 
plan to bring up a dialog box like that shown in Figure 91. Specify the number of accelerating variable 
levels, type of censoring, and the accelerating variable level at use conditions. You may also want to specify 
a particular root for the test plan object name (AdhesiveBond1 in the example). The suggested default suffix 
altpv is provided automatically. Then provide the actual plan information. Note that it is allowable to use an 
allocation of 0 for a level if desired. 
 

 
 

Figure 91 Completed dialog box specifying an ALT plan. 

After the plan is specified, click on “OK” or “Apply” (in case that you want to make more than one related 
plan. To specify a second or third plan, edit the plan and the root of the plan object name (e.g., use 
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AhhesiveBond2 so that the previously specified plan(s) will not be overwritten) and again press “OK” or 
“Apply”. 
 
10.3 Summarization and approximate evaluation of a specified ALT test plan 
Using SLIDA qqqq Plan an accelerated life test qqqq Plot, summarize, and evaluate ALT test plan 
will bring up the dialog box shown in Figure 92. In this box, one specifies the ALT plan values object 
(AdhesiveBond.Weibull.altpv in this case), the ALT test plan object (AdhesiveBond1.altplan) to be 
evaluated, and the use conditions (50 Degrees C for the adhesive bond). By default, the output produced 
includes a tabular summary and a plot summary of the specified ALT test plan. Figure 93 shows an 
Arrhenius plot for the adhesive bond test plan specified in Figure 91, using the planning values that were 
specified in Figure 90.  
 

 
 

Figure 92 Dialog box asking for a summary evaluation and plot of a proposed accelerated life test 
plan for the adhesive bond example. 

Tabular output provides a printed summary of the planning values and the test plan, followed by a listing of 
the large-sample approximate standard deviation and confidence interval precision factor for confidence 
intervals corresponding to each of the quantiles listed in the  “Plot, summarize/evaluate ALT Plan” dialog 
box shown in Figure 92. 
 

Table 15 ALT planning information and test plan specification for the adhesive bond example. 

Accelerated test planning values  
 
Distribution:  Weibull   
Relationship:  Arrhenius   
Time units:  Days   
  
For a censoring time of 183 Days   
the failure probability at 50 Degrees C  is:  0.001   
 
Intercept is:  -16.7     
slope =  0.726   
  
weibull.beta =  1.67   
sigma =  0.6   
 
Accelerated Test Plan 
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  level number censor.time     xi    pi    prfail Efail  
1    78    155         183 0.4478 0.518 0.0315772  4.89 
2    98     60         183 0.7264 0.201 0.242189  14.5  
3   120     84         183 1      0.281 0.900543  75.6  
 
Use condition is 50 Degrees C  
 
Total number of test units= 299  
 
The large sample approximate standard deviation 
of the 0.1 log quantile at 50 Degrees C  = 0.4378  
corresponding to a 95% confidence precision factor or R= 2.358  
 
The large sample approximate standard deviation 
of the 0.5 log quantile at 50 Degrees C  = 0.4911  
corresponding to a 95% confidence precision factor or R= 2.619  
 
The large sample approximate standard deviation 
of the 0.9 log quantile at 50 Degrees C  = 0.532  
corresponding to a 95% confidence precision factor or R= 2.837  
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Figure 93 Arrhenius plot showing a proposed test plan for the Adhesive Bond example. 

 

10.4 Simulation of an ALT test plan 
Although the approximate evaluation given above is useful, doing a simulation of a proposed ALT test plan 
avoids the use of large-sample approximations (which will not be adequate when some of the test conditions 
have expected numbers of failures that are small) and will provide insight into the limitations of a proposed 



 93 

test plan. Using SLIDA qqqq Plan an accelerated life test qqqq Simulate an ALT test plan brings 
up the dialog box in  Figure 94, allowing the user to request a simulation of a proposed ALT test plan. 

 

 
Figure 94 Dialog box requesting a simulation to evaluate a proposed accelerated life test plan for the 
adhesive bond example. 

Then specify the previously created ALT plan values (e.g., AdhesiveBond.Weibull.altpv), the ALT test plan 
object (e.g., AdhesiveBond1.Weibull.altplan), the Use conditions, and possibly change other optional 
inputs, and click on “OK” or “Apply.” The simulation will then begin to run, giving an indication of 
progress in the output window (completing the simulation will take from a few seconds to a few minutes 
depending on the number of simulations requested (100 is sufficient for most purposes). When completed, a 
summary of the results is depicted in a model plot (an Arrhenius plot for the example), as shown in Figure 
95. 
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Figure 95 Arrhenius plot showing a summary of the simulation of the proposed accelerated life test 
for the Adhesive Bond. 

 
Accelerated life tests are complicated, expensive experiments. Careful planning of such experiments is 
important. SLIDA provides tools for the evaluation and comparison of proposed accelerated life test plans. 
To use these tools, on must specify model information (or planning information) and the proposed test 
plan(s). 
 

11. Recurrence (point process) data analysis 
Recurrence data (also known as point process data) arise when events are tracked on a collection (or 
sample) of units over time. Such data arise in many different applications. For example, in field tracking, a 
group of units is monitored over time and a record is kept of repairs for individual units, perhaps consisting 
of data, type of repair, and the cost of the repair. Interest, for example, may center on the recurrence rate or 
on the average cumulative cost of system maintenance as a function of time.  
 
11.1 Creating a recurrence data object 
As with life data, to do a SLIDA analysis of degradation data, one first has to construct a recurrence data 
object. Because the structure of recurrence data is different from that of life data, there is a different dialog 
box to making a recurrence data object. SLIDA qqqq Make/edit/summary/view data object qqqq 
Make a recurrence (point process) data object to bring up the dialog box in Figure 96.  
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Figure 96  Dialog box used to make a  recurrence data object. 

 
Clicking on the Choose data frame arrow in the dialog box illustrated in Figure 96 will show all of the 
data frames in the SLIDA database and in the user’s working database. Only some of these will be 
appropriate for making a repeated measures data object. SLIDA has no way to distinguish among different 
generic data frames (as it attempts to do with data objects when it decides which to put into a list available 
for use) , so all data frames appear in the list. When the needed inputs have been specified, click on “OK” 
or “Apply” to create the data object. In addition to creating the recurrence data object, a short summary of 
the data in the object is provided (as show in Table 16) and, if desired, a printout of the data can be 
requested by using the Output Options page of the dialog box. 
 
After choosing a data frame corresponding to a recurrence data set, one must choose the time, unit 
identifier, and the status/event columns from the frame (all are required for recurrence data). The dialog in 
Figure 96 uses the earth-moving machine maintenance data (MachineH is the frame name) from Chapter 16 
of Meeker and Escobar (1998). For the earth-moving machine data there is also a cost variable giving the 
cost of each reported maintenance action. Because cost was of primary interest in this application, this 
variable is also specified in the dialog box. When the needed inputs have been specified, click on “OK” or 
“Apply” to create the data object. In addition to creating the recurrence data object, a short summary of the 
data in the object is provided (as shown in Table 16) and, if desired a printout of the data can be requested 
by using the Output Options page of the dialog box. 
 

Table 16 Summary of: Earth-Moving Machine Maintenance Data 

Number of rows in data matrix= 573  
Number of units in the recurrence data object:  23  
Number of event times = 550  
Total cost/weight of events in the recurrence data set= 1958.7  
Response units:  Hours  
Response minimum:  52  
Response maximum:  9249.5  
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11.2 Recurrence data event plot 
As with the analysis of other types of data, one should start with simple graphical methods that provide 
insight into the nature of the data. Using SLIDA qqqq Recurrence data analysisqqqq Recurrence 
event plot will produce the dialog box in Figure 97. In this dialog box one specifies the name of a 
recurrence data. There are options to print the events for a subset of the data. This option is useful when 
there are a large number of units in a data set. 
 

 

Figure 97 Dialog box requesting an event plot for the earth-moving machine (Machine H) 
maintenance data. 

Then, clicking “Apply” of “OK” produces the event plot in Figure 98, allowing one to visualize the events 
(maintenance actions in this example) as they unfolded in time (measured in hours of operation for this 
example). 
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Figure 98 Event plot for the earth-moving machine  (Machine H) maintenance data. 

 
 
11.3 Recurrence data mean cumulative function 
Using SLIDA qqqq Recurrence data analysisqqqq Mean cumulative function plot will generate a 
dialog box from like that shown in Figure 99, from which one can request a plot of the mean cumulative 
function (MCF) and corresponding pointwise confidence intervals for a recurrence data set. There is an 
option to request a table giving the same information. Figure 100 shows the MCF for the earth-moving 
machine data. As described in Example 16.6 of Meeker and Escobar (1998), some of the irregular behavior 
in this function in the early part of life can be traced to the regularly scheduled maintenance of the machines 
in the fleet. 
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Figure 99 Dialog box requesting a mean cumulative function (MCF) plot for the earth-moving 
machine (Machine H) maintenance data. 
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Figure 100 Mean cumulative function (MCF) plot for the earth-moving machine (Machine H) 
maintenance data. 

 
11.4 Compare two mean cumulative functions  
In some applications, there is a need to compare recurrence data from two fleets, manufacturers, methods, 
etc.  The dialog obtained from SLIDA qqqq Recurrence data analysis qqqq Compare two mean 
cumulative functions plot, shown in Figure 101, allows one to request a plot making such a 
comparison.  As an example, we use data from Doganaksoy and Nelson (1991) on the lifetime of breaking 
grids used in locomotives. This example was also used in Section 16.3 of Meeker and Escobar (1998). The 
plot in Figure 102 shows an estimate of the difference between the MCF functions for two different 
production batches of breaking grids along with corresponding pointwise confidence intervals. Because the 
zero line falls outside of the pointwise confidence interval, the plot suggests that there is a statistically 
important difference between the two batches. 
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Figure 101 Dialog box requesting a plot comparing two mean cumulative function (MCF) plots. 
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Figure 102 Plot comparing two mean cumulative function (MCF) plots. 

 
11.5 Convert renewal recurrence data to life data (not yet available) 
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Using SLIDA qqqq Recurrence data analysisqqqq Convert renewal recurrence data to life 
data will allow the user to convert certain kinds of recurrence data into life data. The underlying 
assumption that is needed for the output of the conversion to provide data that will not be misleading is that 
the randomness in times between events (perhaps conditioned on some explanatory variables) in the 
recurrence data process can be modeled adequately as a sequence of identically distributed independent 
observations.  
 

 
12. Degradation (Repeated Measures) Data Analysis 

 
SLIDA provides convenient tools for doing the “simple degradation analysis” described in Chapters 13 and 
21 of Meeker and Escobar (1998) and elsewhere (as indicated in their end-of-chapter bibliographic notes). 
In this simple method for degradation analysis, separate regression analyses are run on each individual 
degradation path to predict failure times (which we call pseudo failure times) for those units that have not 
failed. The idea is to squeeze a little more information out of one’s data. This approach to degradation 
analysis (indeed any method of degradation analysis that will require any extrapolation) needs to have a 
solid basis for the underlying degradation path model. Ideally, this will be a model based on well-developed 
physical-chemical theory (e.g., some simple wear processes are known to be approximately linear after a 
break-in period). When such a physical model is not available, extrapolation may not be justified. 
 
We do not recommend the use of model fitting and experimentation with different variable transformation 
in order to find, in a simple way, the relationship of “best fit” when there will ultimately be more than just a 
little extrapolation in time. In any case, when extrapolation is required, analyses should be accompanied by 
careful, systematic sensitivity analysis among a collection of models that are plausible. This sensitivity 
analysis is critical to obtaining an understanding of the magnitude of model uncertainty (which when 
extrapolating can dominate the statistical uncertainty quantified in our confidence intervals). 
 
 
12.1 Make a degradation (repeated measures) data object 
As with life data and recurrence data, one first has to construct a degradation data object. Because the 
structure of different data is different from that of life data, there is a different dialog box to making a 
recurrence data object. Using SLIDA qqqq Make/summary/view data object qqqq Make a 
degradation (repeated measures) data object will bring up a dialog box like that shown in 
Figure 103. Clicking on the Choose data frame arrow will show all of the data frames in the SLIDA 
database and in your working database. After choosing an appropriate repeated measures data frame, one 
must choose the response, time, and unit identifier (all are required for degradation data), and explanatory 
variables, if any. There are a number of other optional inputs or opportunities to change defaults. The 
example in Figure 103 uses the GaAs Laser (GaAsLaser is the data frame name) degradation data from 
Chapter 13 of Meeker and Escobar (1998). When the needed inputs have been specified, click on “OK” or 
“Apply” to create the data object. In addition to creating the degradation data object, a short summary of the 
data in the object is provided and, if desired a printout of the data can be requested by using the “Output 
Options” back page of the dialog box. 
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Figure 103 Dialog box used to make a repeated measures  (degradation) data object. 

 
 
12.2 Degradation data plot 
Using SLIDA qqqq Degradation data analysisqqqq Degradation data plot brings up a dialog box, 
like that shown in Figure 104, which can be used to request a plot of degradation paths. If there are 
explanatory variables, there is an option to group paths by explanatory variable levels, instead of plotting all 
paths on a single graph. It is possible to request special axes transforms (e.g., linear, log, or square root 
axes) to plot either time or the response. The Modify Plot Options page allows one to control  the ranges of 
the plot axes. 
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Figure 104 Dialog box to request a plot of degradation data for the GaAs Laser data. 

Figure 105 shows a simple degradation plot for the GaAs laser data. 
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Figure 105 Plot of degradation data for the GaAs Laser data. 

 
12.3 Degradation data trellis plot 
Using SLIDA qqqq  Degradation data analysisqqqq Degradation data trellis plot brings up a 
dialog box like that shown in Figure 106. This dialog box is used to request a trellis plot of degradation 
paths. If there are explanatory variables, there is an option to group paths by explanatory variable levels, 
although the individual plots, as illustrated in Figure 107, are recommended because they can be 
importantly revealing.  
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Figure 106 Dialog box to request a trellis plot of the GaAs laser degradation paths. 

 
 

 

Figure 107 Trellis plot of the GaAs laser degradation paths. 
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12.4 Accelerated degradation cell-average plot 
Many degradation experiments are run at accelerated conditions (e.g., high temperature) in order to 
accelerate the degradation process. A useful plot for such data is a cell-average plot giving the average 
degradation as a function of time for the different level(s) of an explanatory variable. Averages are 
computed across all units at combinations of the chosen explanatory variables The following example uses 
the resistor data (three levels of temperature) to make such a plot. The plot gives a good visual indication of 
the effect of temperature on degradation rate. Using SLIDA qqqq  Degradation data analysisqqqq 
Accelerated degradation cell-average plot brings up the dialog box in Figure 108.  
 

 

Figure 108 Dialog box requesting a plot of the average reading of all units at the different 
temperatures for the carbon-film resistor degradation data. 

 
Figure 109 shows the resulting cell-average plot for the resistor degradation data. 
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Figure 109 Plot of the average reading of all units at the different temperatures for the carbon-film 
resistor degradation data. 

 
12.5 Convert/extrapolate data to failure-time data 
The so-called “simple degradation analysis” method mentioned at the beginning of this section fits a 
specified model to each of the sample paths in an effort to “squeeze” a little more information out of such 
data by exptrapolating the paths (or some of the paths) to predict the time of failure. Then the “pseudo 
failure times” are analyzed using the standard methods for failure-time data. The conversion of degradation 
path data to failure-time data can be done easily with the SLIDA qqqq Degradation data analysis qqqq  
Convert/extrapolate data to failure-time data dialog. It is necessary to specify the repeated 
measures (degradation) data object and the degradation level defining failure. For the GaAs lasers, failure 
was defined as the time at which 10 mA of current was needed to provide a specified  (constant) amount of 
light output. It is also possible to specify a maximum time (a pseudo censoring time), beyond which no 
failures are extrapolated. For the GaAs lasers, focus was on the lower quantiles of the failure-time 
distribution and thus the paths were extrapolated only to 5000 hours, where 6 out of 15 lasers had failed 
(i.e., had predicted current greater than 10 mA). As in the dialog box for plotting degradation paths, on has 
a choice of axis scales (e.g., linear, square root, or log). These same transformations are also used to 
determine the scale in which to fit the linear regression lines used to extrapolate the degradation paths to the 
compute the pseudo failure times. The effect of this choice can be quite pronounced (especially in the 
dangerous and discouraged practice where one is extrapolating far in time) and in the absence of strong 
physical motivation for one or the other, sensitivity analysis is strongly recommended. 
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Figure 110 Dialog box requesting that the GaAs laser degradation date be mapped into pseudo 
failure time data using 10 mA as the definition of failure and a censoring time of 5000 hours. 

After clicking on “OK” or “Apply,” Slida procudes the plot in Figure 111 showing the degradation paths 
and extrapolations to the fiailure level of censoring time (which ever comes first) and the life data object 
GaAsLaserF10C5000.XLinear.YLinear.ld is available for doing failure-time analysis. Note that the default 
name (which could have been edited) reflects the failure definition level, pseudo censoring time, and the 
transformation/axes used in generating the pseudo faulure times. Such descriptive names are useful because 
analysts will often want to experiment with different choices for some or all of these and the automatic 
coding makes it easy to do such experiments and to compare the results of different analyses using all of the 
previously described tools for such data. 
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Figure 111 Plot showing the GaAs laser degradation data being mapped into pseudo failure time data 
using 10 percent as the definition of failure and a censoring time of 5000 hours. 

 
Figure 112 is an event plot showing the six pseudo failure times and the nine observations censored at 5000 
hours in GaAsLaserF10C5000.XLinear.YLinear.ld. In this example, the amount of extrapolation is 
small (especially because no extrapolation was done beyond 5000 hours) and the degradation paths are well 
behaved. Thus, the pseudo failure times should provide reasonably good predictions for the actual failure 
times. 
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Figure 112 Event plot showing the predicted failure times for the GaAs laser degradation 
experiment. 

 
12.6 Degradation residual trellis plot 
We have emphasized the importance of having a solid basis for any model used in extrapolation of sample 
degradation paths. Whether or not such a model is available, it is important to assess the adequacy of the 
fitted models to the degradation paths. If the model does not even fit the data within the range of the data, 
careful consideration should be given to the usefulness of the data for purposes of predicting a failure-time 
distribution. Of course, one should always remember that just because the model provides a good fit to the 
data and may be adequate for making predictions within the range of the data, there is no guarantee that the 
degradation process will continue to follow the fitted model outside of the range of the available data. 
 
The dialog box in Figure 113 allows the user to request a trellis plot of residuals for the straight lines fit to 
(possibly transformed) degradation data. Such plots help one to detect systematic departures from the fitted 
model. Figure 114 shows the residual trellis plot for the GaAs laser data. For this example, there appears 
not to be any systematic departures from the fitted straight-line model. 
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Figure 113 Dialog box to request a residual trellis plot for each of the GaAs laser data regression 
lines. 

 

 

Figure 114 Trellis plot of residuals for each degradation path for the GaAs laser data. 
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13. Special Models 
 
13.1 Generalized gamma distribution 
SLIDA qqqq Special models qqqq Generalized gamma distribution 
 
13.2 Limited failure population model 
SLIDA qqqq Special models qqqq Limited failure population model 
 
13.3 Generalized (two failure modes) limited failure population model 
SLIDA qqqq Special models qqqq Generalized (two failure modes) limited failure population model 
 
13.4 Random fatigue limit model 
SLIDA qqqq Special models qqqq Random fatigue limit model 
 
13.5 Two-dimensional warranty bivariate model 
SLIDA qqqq Special models qqqqTwo-dimensional warranty bivariate model 
 

 
14. Changing SLIDA Default Options 

Using SLIDA qqqq Change SLIDA default options will bring up the dialog box shown in Figure 115, 
allowing one to make global changes to the several of the SLIDA defaults options. Some of these options 
were discussed in Sections 2.5 and 2.6. Changes are effected immediately after chosen on the dialog pages 
(no need to click on “OK” or “Apply”). Changes made when the “Save changes across sessions” box is 
checked are saved across sessions. To restore the original SLIDA defaults, click on the “Restore defaults” 
box. To erase across session changes, click on the Restore defaults” box when when the “Save changes 
across sessions” box is checked. 
 

 
 

Figure 115 Basic page of the dialog box for changing SLIDA operation defaults. 
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Figure 116 shows the “Print “option page of the dialog box, which allows changing the default number of 
digits used in SLIDA tabular output, the default list of quantiles to be estimated, and an option to print out 
the variance-covariance matrix of ML estimates when such estimation is performed. 
 

 

Figure 116 Print option page of the dialog box for changing SLIDA operation defaults. 

 
The “Misc” page, shown in Figure 117, allows the user to choose whether to save the regression 
relationship in ML estimation results objects (the choices are: always, never, and multiple regression only). 
If the check box is checked, then when a life data object is created, the main part of the object is a character 
string giving the name of the data frame to use as part of the data object. Otherwise, the main part of the 
data object is the data frame itself. For most purposes, the difference between using these two different 
options is transparent to the user. For some kinds of analyses, the character string version may use less 
memory. The data frame objects are easier to use when it is desired to manually choose a subset of the data 
for analysis. 
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Figure 117 Misc page of the dialog box for changing SLIDA operation defaults. 

 
The “Misc” page, in Figure 117, also allows one to recreate the SLIDA GUI. This is most useful when a 
new version of SLIDA has been installed on your system. Clicking the Recreate button will modify the S-
PLUS _Prefs directory in the current working folder (most users have separate working folders for different 
projects and these would not otherwise be updated when a new version of SLIDA is installed elsewhere in 
the system). 
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15. SLIDA Setup and Operation 
SLIDA is distributed as a self-extracting executable file Slida.exe. When Slida.exe is executed, it creates a 
folder (c:\Slida by default) that contains other folders and files. This is the “Slida folder.” A snapshot of the 
inside of this folder is given in Figure 118.  
 

 

Figure 118 View inside the Slida folder 

 
There are two different approaches for setting up SLIDA for operation. The first method, explained in 
Section 15.2, is a little simpler, but less flexible. It is appropriate only for a single user on a desktop 
computer and only allows the use of one project folder. The second method, described in Section 15.3, is 
more flexible and is preferred. It allows for multiple project folders (e.g., for different projects or different 
users sharing the same computer). It is possible to start with the first method and then subsequently create 
the alternative folders and shortcuts to use SLIDA in the more flexible mode.  
 
 
15.1 Installing updated version of SLIDA  
To install an updated version of SLIDA over an existing version, simply follow the same steps used in the 
initial install, outlined in step a) below, installing in the same location, using the default WinZip option to 
overwrite any old files. 
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15.2 New setup for Single-user/Single-project SLIDA operation 
To install SLIDA: 
 

a. Move theSlida.exe file to some location (like your Desktop) and double-click to execute the file. 
The WinZip self-extracting file will prompt you to ask if you can to change the default directory 
from C:\SLIDA. It is ok to change this, but the location of the Slida folder will then be different 
from that indicated in these instructions, requiring, for example, some minor changes in short cut 
properties. 

 
b. Create a copy of the S-PLUS startup icon shortcut (right-click on and drag the S-PLUS icon; 

release the right mouse button, and choose "copy"). Right click on the new icon and choose 
"properties" under "shortcut." This will bring up a dialog box like that shown in Figure 119. Set 
S_PROJ on the "Target" command line (note: do this on the "Target" and not on the "Start in" 
command line) of this shortcut to read: 

 
"c:\Program Files\sp2000\cmd\splus.exe" S_PROJ="c:\SLIDA" 

 
where "c:\Program Files\sp2000\cmd\splus.exe" is the existing path to S-PLUS and depends on the 
version of S-PLUS and the option used when S-PLUS was installed. Do not change the first part of 
this line. Only add the S_PROJ="c:\SLIDA" to the end of the line. Make sure there is a space 
between before the S_PROJ="c:\SLIDA". After typing the S_PROJ="c:\SLIDA", click on 
"apply" and "Close." Then rename the new S-PLUS icon to S-PLUS_SLIDA or something similar 
(right-click on the icon to get choices including rename). A sample shortcut using the above 
default folder names is given in the Slida folder (c:\Slida).  The shortcut tab page of the Slida 
shortcut Properties dialog box is shown in Figure 119. 

 
c. Fire up S-PLUS using the S-PLUS_SLIDA icon. 

 
To use SLIDA for analyzing data, you can use either the GUI or the command line (if you have the 
“Professional” version of S-PLUS).  
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Figure 119 Shortcut tab page of the Slida shortcut Properties dialog box 

 
15.3 Creating multiple SLIDA project folders and using SLIDA on a shared computer 
As described in the Section 15.2, after executing the Slida.exe install file and setting up a shortcut, SLIDA 
is ready to operate. In some situations, however, it may be desirable to set up an alternative folder or folders 
in which to run SLIDA. In particular, some S-PLUS users like to use separate startup folders for different 
projects, so that created objects do not get confused from one problem to another. Similarly, if different 
users work on the same computer usually they would want to operate using separate S-PLUS/SLIDA startup 
files. In addition, it may be desirable (on NT and Windows2000 computers) to install SLIDA in a write-
protected folder to reduce any chance that files in the folder will become corrupted. The SLIDA folder 
(found atcC:\Slida by default) contains folders two example SlidaUser folders (SlidaUser2000 and 
SlidaUser45, respectively, for S-PLUS versions 2000 and 4.5) and corresponding shortcuts pointing to 
these folders.  
 
Start by doing step a) in the Section 15.2 to install the SLIDA folder. If you copy a SlidaUser folder to C:\, 
and if SLIDA was installed in C:\, then the given SlidaUser shortcut can be copied to the desktop and used 
without change. Otherwise, some minor adjustments are needed. In particular, the SlidaUser shortcut 
properties must point to both the location of S-PLUS and the SlidaUser folder. The file path.txt in the 
SlidaUser folder must point to the place where SLIDA was installed.  
 
In general, to set up a user- or project-specific folder to operate SLIDA, do the following (note the 
distinction between the SLIDA folder, the SlidaUser folders, and the SlidaUser shortcuts in the following 
instructions): 
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a. Make a copy of the appropriate SlidaUser folder (either SlidaUser2000 or SlidaUser45, depending 
on which version of S-PLUS you are running) in a convenient place (e.g., in C:\) and, if desired, 
give the folder a new name, say corresponding to a user’s name or a project name. 

 
b. If the Slida folder was installed in a place other than the default C:\Slida, the file Path.txt in the 

SlidaUser folder should be modified (e.g. using notepad) to point to the location of SLIDA (note 
that the \\ in this file is necessary when specifying a path name to S-PLUS). The SlidaUser folder 
can be copied and renamed as many times as necessary to create separate S-PLUS/SLIDA startup 
folders.   

 
c. Make a copy of the appropriate SlidaUser shortcut (either SlidaUser2000 or SlidaUser45, 

depending on which version of S-PLUS you are running) in a convenient place (e.g., the desktop) 
and, if desired, give the shortcut a new name. 

 
d. Right-click on the shortcut, choose properties, and go to the shortcut tab. E If necessary, edit the 

target line so that the first part points to S-PLUS (looking at an existing shortcut to S-Plus will 
show how to do this). Then, on the right-hand side of the target line, edit the 
S_PROJ="C:\SlidaUser2000" so that it points to the location of your particular SlidaUser folder 
(or what ever name the folder now has) and its location. 

 
15.4 Making or remaking the SLIDA menu structure and startup folders 
SLIDA is distributed with a Windows folder (in c:\Slida by default) containing a _Prefs folder that contains 
the definition of the SLIDA menu structure and a _Data folder containing a .First function that attaches the 
SLIDA object folders and loads the SLIDA life data analysis symbols. When you attempt to use S-PLUS in 
a target folder that does not contain either the _Prefs or the _Data folder, they are generally created 
automatically by S-PLUS (S-PLUS first asks if you want to do this), but when these folders are created by 
S-PLUS, they will not be set up to run SLIDA. The SlidaUser contains SLIDA-specific _Prefs and _Data 
folders, modified so that they can operate in locations other than inside the SLIDA folder. 
 
If you are using the “professional” version of S-PLUS and, for some reason, you would like to regenerate 
the SLIDA/S-PLUS _Prefs folder from scratch, follow the following steps (you need the Professional 
version of S-PLUS to do this):  
 

a. Delete the _Prefs folder in the SLIDA/S-PLUS target folder. 
b. Fire up S-PLUS using a shortcut that points to the target folder (e.g., SlidaUser). 
c. When S-PLUS warns you that _Prefs and/or _Data are missing, click OK. 
d. Give the command make.slida.gui( ). Depending on the speed of your machine, it will take from 2 

to 5 minutes to finish this setup. When done, S-PLUS will be operating with the default S-PLUS 
setup (which differs slightly from the SLIDA setup). 

 
If you are usingthe standard version if S-PLUS, you can rebuild the SLIDA GUI with SLIDA qqqq Change 
SLIDA default options, selecting the Misc tab, and clicking on “Re-ceate SLIDA GUI.” 
 
 
15.5 Comments on using SLIDA (and S-PLUS) on Windows 

 
a. If S-PLUS seems to be hanging or taking too long to execute, you can type <ESC> to break out of 

a command. 
b. If graphics window becomes corrupted, try the S-PLUS command refresh( ). Alternatively, kill the 

graphics window (by clicking the x in the upper right-hand corner of the graphics window).  A 
fresh graphics window will be started. 

c. As you use S-PLUS over a period of time, memory usage can build up, and it may be necessary 
(especially if you are only working with 32 MB of memory) to restart S-PLUS. The command 
check.memory( ) will allow you to monitor this. If you can afford it, install more memory. I 
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noticed a big improvement when going from 32 MB to 64 MB, and now I use 128 MB or better. In 
extreme cases, S-PLUS may hang and it may be necessary to reboot your machine (. I do not know 
whether to blame this on S-PLUS or Windows, but it is clear to me that when taxing the resources 
of Windows, operation can get a bit flaky. 
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16. Outline of the SLIDA Menu Structure 
The following table contains an outline of the SLIDA menu structure. The GUI dialog boxes for the 
items shown in regular-faced type are still in development. 
 
SLIDA qqqq  

Make/summary/view data object qqqq 
Make a life data object  
Make recurrence (point-process) data object  
Make degradation (repeated measures) data object  
Summary/view a data object  
Edit a life data object 
 

Plan single distribution study qqqq  
Specify life test planning information (planning values)  
Plot life test planning information (planning values)  
Plot of approximate required sample size 
Simulate a life test  
Probability of successful demonstration 
 

Single distribution life data analyses qqqq  
Plot nonparametric estimate of cdf and confidence bands 
Probability plot with nonparametric confidence bands  
Probability plot with parametric ML fit  
Likelihood contour plot 
Compare distribution ML fits on probability plot 
Threshold parameter probability plot with parametric ML fit  
 

Multiple failure mode life data analysis qqqq 
Individual modes 
Combined modes (with one or more omitted) 
Make life data objects for individual modes 

 
Comparison of distributions life data analysis qqqq 

Probability plot and ML fit: different shapes (slopes)  
Comparison likelihood contour plot 
Probability plot and ML fit: common shapes (slopes)  
Make life data objects for individual groups  
Probability of correct selection for specified test plans 

 
 Plan an accelerated life test (ALT) qqqq  

Specify an ALT model information (planning values)  
Specify an ALT test plan  
Plot, summarize, and evaluate an ALT test plan 
Simulate an ALT test 
 

Simple regression (ALT) data analysis qqqq  
Censored data scatter plot 
Probability plot and ML fit for individual conditions  
Prob plot and ML fit for indiv cond: common shapes (slopes)  
Probability plot and ML fit of a regression (acceleration)  
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Make life data objects for individual groups  
 
Multiple regression (ALT) life data analysis qqqq  

Censored data pairs plot  
Censored data scatter plot 
Probability plot and ML fit for individual conditions  
Prob plot and ML fit for indiv cond: common shapes (slopes)  
Probability plot and ML fit of a regression (acceleration)  
Conditional stress plot  
Sensitivity analysis plot  
Make life data objects for individual groups  
 

Regression residual analysis qqqq  
Residuals versus fitted values  
Residuals  versus possible explanatory variables  
Residuals versus observation order 
Residual probability plot  

 
Recurrence (point process) data analysisqqqq  

Recurrence event plot 
Mean cumulative function plot 
Compare two mean cumulative functions plot 
Convert renewal recurrence data to life data 
 

Degradation (repeated measures) data analysisqqqq  
Degradation data plot  
Degradation data trellis plot  
Accelerated degradation cell-average plot 
Convert/extrapolate degradation data to life data  
Degradation residual plot 
 

Special models qqqq  
Extended generalized gamma (EGENG) distribution 
Limited failure population (LFP) model  
Dead on arrival (DOA) population model 
Generalized (two failure modes) limited failure population model 
Random fatigue limit (RFL) model 
Two-dimensional warranty bivariate model 

 
Change SLIDA default options (preferences) 
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