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1. Introduction

S-PLUS isapowerful, extendible, environment for data analysis and graphics. The “ Standard Version” of
S-PLUS provides access to the S-PLUS functionality through a point-and-click GUI. The “Professional
Version” of SSPLUS includes, in addition, access to the S-PLUS command line and the capability to
develop extensionsto S-PLUS. These extensions may also include additions to the S-S PLUS GUI.

SLIDA isacollection of S-PLUS extensions (both commands and GUI) for planning and analyzing the data
from empirical reliability studies (e.g., |aboratory life tests, accelerated life tests, warranty repair data, and
other field data). Most SLIDA capabilities are available through the SLIDA extensions to the S-PLUS GUI.
THUS, SLIDA can be used with either the Standard or the Professional versions of S-PLUS (although
advanced users with the professional version have access to additional functionality and the ability to make
further extensions to SLIDA/S-PLUS). The main part of this document describes and illustrates the SLIDA
graphical user interface (GUI). The methods and analyses parallel closely the methods and examples used in
Meeker and Escobar (1998). Theitemsinthe SLIDA menu correspond approximately to the chaptersin the
Meeker and Escobar (1998) textbook. Italic text presents general concepts concerning SLIDA that pertain
to most, if not all, of the available SLIDA functionality and dialogs.

The Appendix contains an outline of the SLIDA menu structure.

There appearsto be a non-serious bug in the SPLUS 2000 GUI (both with and without the November
1999 Service Release) that causes the “ white” part of a multi-select dialog box from a back page of a
dialog to appear sporadically when a dialog box first appears. By paging across the different pagesin the
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dialog, thiswill fix itself without further difficulty. We have not noticed this problemwith SPLUS4.5R2
(July 1998 servicerelease).

2. Getting Started with SLIDA

All SLIDA data analyses require a data object. Life data analyses use a SLIDA “life data object.” A life
data object contains, for a given data set, available information about failure times (e.g., failure times,
running times, intervals in which failures are known to have occurred, etc.), time units (e.g., hours or days),
explanatory variables (if any), and a data-set title. Having al of thisinformation in alife data object makes
it much easier to do various analyses on a particular data set. There are similar (but different) kinds of data
objects for recurrence data analysis and for degradation data analysis, as described in subsequent sections of
this document.

21 Exampledatasetsand a simple example

For convenience of illustrating features of SLIDA and for purposes of teaching courses, SLIDA hasalarge
number of built-in data objects. Data objects are included for most of the examples and many of the
exercisesin Meeker and Escobar (1998). The appendix contains an index of and references for the original
sources for these data sets.

To see how easy it isto do an analysis with SLIDA Click SLIDA s Single distribution analysis wp
Probability plot with nonparametric confidence bands, to bring the dialog box in Figure 1. Choose from the
list of life data objects (e.g., BearingCage.ld, for the Bearing Cage data from Abernathy et al. (1983), also
analyzed in Example 8.16 of Meeker and Escobar , 1998). Now choose a distribution (e.g., Weibull), click

“Apply” and a probability plot, like that in Figure 2, will appear in the graphics wjndow. |
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Figure 1 Dialog box to request a probability plot of the bearing cage data.
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Figure 2 Weibull probability plot of the bearing cage data.

2.2 Inputting data directly into SPLUS: Creating a data frame

In order to analyze your own data, you first have to enter the datainto an S-PLUS data frame. This can be
done by importing from an existing file, as described in Section @ For asmall data set, however, one can
simply enter data directly to make a S-PLUS data frame and then create a SLIDA data object.

Here we use the titanium crack initiation times described in Problem 6.7 of Meeker and Escobar (1998).
There were nine observed crack initiations (failures) out of 100 specimens that were tested until 100
thousand cycles. Choose Data mp Select Data. Then choose the "New Data" option in the dialog box, enter a
name for the data frame (e.g. Prob6p7 for Problem 6.7), and click OK. A blank data frame will appear.
Type the numbers 18, 32, 93 into the first column. In the second column, type the word Failure in each
row. Then add a last row with time 100 and the word Censored. We also need a column of "Weights' to
indicate observation multiplicity. Put "1" in all rows except the last, where you should put "91" for the 91
censored units. The default names on the columns are V1, V2, and V3. You can use these, but it is better to
change them to something more meaningful. Right-click on a column, choose properties, change the name,
and click “OK”. Repeat for other columns. After doing this, your table (actually a data frame) should look
something like

Table 1 Data from Meeker and Escobar (1998) Exercise 6.7, asthey would appear in an S
PLUS data frame

| keycles Type Count




18 Failure 1
32 Failure 1
39 Failure 1
53 Failure 1
59 Failure 1
68 Failure 1
77 Failure 1
78 Failure 1
93 Failure 1
100 Censored 91

Users can also easily import a data frame from an Excel worksheet or from atext file (as shown later).
2.3 Creating alife data object

To do life data analyses (e.g., when the response is time to failure from a set of independent units) with
SLIDA, one needs to make alife data object (in effect, defining the purpose of the columnsin the data
frame and adding other important information like a data title and time units). Once constructed, the datain
the life data object can be analyzed using different SLIDA methods. A data object is constructed by
choosing an S-PLUS data frame containing the raw data, specifying which column is the response and, as
needed or desired, making other choices. From the S-PLUS menu bar, choose SLIDA
Make/summary/view/edit data object mp Make life data object to bring up the dialog box shown in
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Figure 3 Blank (initial) dialog box for making a SLIDA life data object.

Clicking on the Choose data frame pull-down arrow will show data framesin the SLIDA database and in
your working database. Data frames for most of the examplesin Meeker and Escobar (1998) and many
other examples from the reliability data analysis literature are included on the SLIDA database. ASCI| text
data sets are also given in one of the SLIDA folders (SLIDA_text_data).

Choose the data frame Prob6p7 from the list. Then choose the response (kcycles), the censoring indicator
(Type), and weights (Count). Then click “Apply” (or OK). You will get abrief summary of the data.

After one chooses a data frame, SLIDA will use the column names in that frame to make lists of variables
for other dialog box inputs. Choose the response column (named “kcycles’ in the Prob6p7 titanium crack
initiation data frame) and the fan censoring indicator (named “ Status’). We will stay with the default name
for the life data object (Prob6p7.1d). The Prob6p7 data frame also has a* Count” column indicating
observation multiplicity. The Prob6p7 data has no failure mode column, explanatory variables, or
truncation. A note can be added to the life data object. There is no limit to the length of this note, and it is
printed when a summary of the data object is printed. In order to simplify use, SLIDA chooses, when
possible, sensible defaults for inputs, but allows the user to easily change these if desired. The final dialog
box for mapping the Prob6p7 data frame into a life data object Prob6p7.1d is shown in Figure 4
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Figure 4 Dialog box to make a life data obj ect.

Now when you launch the analysis dialog by using SLIDA s Single distribution analysis sp Probability
plot with nonparametric confidence bands (see Prob6p7.1d will appear in the list of life data
objects (actually, if it was just created, SLIDA will have remembered it and chose it as the default in this
list). Now choose a distribution (e.g., Weibull), click “Apply” and the probability plot shown in
will come up in the graphics window.

In this and the other SLIDA dialog boxes, there are other options on the “back” pages of the dialog, but we
do not need to use them at this time. Generally, the required and frequently-used options s are on the front
page, with less frequently needed options on the back pages. In this documentation, the focus will be on the
required and other most important inputs for SLIDA. Users are encouraged to experiment with the options
on the back pages. These options are, for the most part, self explanatory and, as much as possible, their
operation is consistent across different SLIDA dialogs.
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Figure 6 Weibull probability plot of the titanium crack initiation data.




2.4 Importing data from Excel and text files

S-PLUS has powerful tools for importing rectangular data sets (in which rows are cases and columns are
variables) into a data frame. For example, to import from an Excel worksheet, into a data frame, use the
following:

(@ From the S-PLUS File menu, choose Import Data mp From File... Thiswill bring up the "Import Data’
dialog box.

(b) Onthe"Filesof type" line, select 'Microsoft Excel Files ("*.xIs")’

(c) Find and left-click on the appropriate folder and then choose the desired Excel file (or optionally, type
the path and filein the "File Name" box).

(d) Inthe“File name box”, type or select the name, and optionally the path, of the file you want to import.

(e) Inthe“Import to Data Frame”, box you can specify the target data frame name. Generally, the default
name (aaaa if the Excel fileis aaaa.xls) isagood choice, but you might choose aaaa.frame instead to
remind you that the object is aframe.

(f) Click “Open” to import the file into the S-PLUS data frame object.

Importing from atext (or ASCII) fileis similar, except that one needs to specify “.txt” files (or “All Files’),
choose the appropriate column delimiters, and specify whether or not the first line in the file contains
column names.

25 Changing SLIDA data-type aliases

SLIDA maintainsinternal lists of names or aliases that can be used to identify “exact failures’ and three
different kinds of censored observations: right censored, left censored, and interval censored. These lists are
used in creating a data object when thereisa“ Status’ or “Censoring” identifer column (e.g., used to
differentiate between failures and censored observations). The default aliases for different kinds of
observations are:

e Exact failures: Fail, Failed, Failure, Dead, Died, Exact, F, Report, fail, failed, failure, dead, died,
exact, f, report, or the number 1.

» Right censored: Alive, Censored, Censor, C, Noreport, R-Censored, Removed, Right, S, Survived,
Survive, Suspend, Suspended, alive, censored, censor, ¢, noreport, R-censored, removed, right, s,
survived, survive, suspend, suspended, or the number 2.

»  Left censored: L-Censored, Left, L-censored, |€eft, or the number 3.
* Interval censored: Bin, Interval, bin, interval, or the number 4.

It is possible to add to or modify the default alias lists by using the Censor 1D page of the Make life data
object dialog box when creating a particular data object. Alternatively, it is possible to make a persistent
change (either for the current session or across sessions) by using the SLIDA sp Change Slida default
options menu item and going to the Censor 1D page. In either case, the dialog page looks Iike To
edit an entry, check the “Change any censor 1D strings’” box and then right-click on the list to be changed
and choose zoom, to allow easy editing.
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Figure 7 Dialog page allowing changesin the default aliases for observation identification.

2.6 Other SLIDA default options (preferences)

Using the SLIDA wp Change Slida default options (preferences) brings up the dialog box shown in
allowing changesin several of the SLIDA default options. There are dialog box pages for changing basic,
plot, print, storage, and censor ID option defaults. Any options chosen while the “ Save changes across
sessions’ box is checked will be saved and recalled in subsequent SLIDA sessions. Clicking the Restore
defaults button will have all of the defaults revert to their original values. More details are given in Chapter
14.
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Figure 8 Basic page of the dialog box for changing SLI1DA default options.




The plot page of the SLIDA mp Change Slida default options (preferences) dialog box, illustrated in
E, allowsthe user to choose whether to date-stamp each plot (the default) or not. The “label or name on
plot” option allows some personalization in which the user can insert a company or personal name on the
plot.
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Figure 9 Plot page of the dialog for changing SL1DA default options.

2.7 Graphicsoptionsand color schemesin SLIDA

S-PLUS allows the user to have control over various graphics options. Although it is not necessary for the
beginner, frequent users of S-PLUS or SLIDA will want to become familiar with the available options.
Some modifications of the default options have been implemented in the _prefsfile that comes with SLIDA.

The default color schemein SLIDA has been changed from “ Standard” to “Cyan Magenta.” This option
provides a much better (sharper and |ess washed-out looking) set of colorsfor SLIDA graphics. The
standard or other build-in options can be chosen with Options mp Graph Style wp Color and changing the
color option box.

Another useful option isto use Options Wp Graph Options and change Graph Style to black and white. The
SLIDA default for the black and white graph style (which differs from the S-PLUS default) uses just black
on white, with no grey scales. Again, the S-PLUS standard black and white Graph option can be restored
with Options mp Graph Styles wp Black and White.

Under Options mp Graph Options, the SLIDA default for Auto Pages is “Every Page” so that new pages
automatically are added to a graphsheet as new plots are created. This makes it easy to compare plots from
different analyses. Beware, however, that saving a large number of graphs can tie up computer system
resources and affect performance or even cause Windows to crash (saving a large number of previous
dialog boxes also has the same effect). Delete unwanted pages by right-clicking on the page number to be
deleted.

3. Single Distribution Life Data Analyses

Analysis of data for the purpose of estimating a single underlying failure-time distribution is the most
common type of relaibility data analysis. This chapter describes methods for such analyses. Even when
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there are several different identifiable groups, it is often desired to focus on one group or another or (when
appropriate) to pool data from different groups for analysis. Choosing SLIDA & Single distribution
life data analyses showsthe SLIDA single distribution analysis options.

3.1 Event plot

For some data sets, an event plot provides a useful visualization of the nature of the data. Using SLIDA
Single distribution life data analyses sp Event Plot brings up the dialog box shown in

Life data event plot !EI
Basic |
— Required Az labelz
Life data object: [T Change axis lahels?

Fand R I.-i'-.utumatic
— &l life data objects y awis label: I.ﬁ.utumatic
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— Optional inputz
Haow ta choose which of 37 to plat?
All -

Title option: IfuII 'I

¥ wieightz on right of plot?

W Shaw Urit 107

ok | cancel| apply | 1| [ curent Help |

Figure 10 Dialog box requesting a life data event plot for the fan data.

After choosing the Fan.Id life data object (based on the diesel generator fan failure data described on page
133 of Nelson 1982 and reanalyzed in Example 7.12 of Meeker and Escobar 1998) from the pull-down list,
click “Apply” or “OK” to see the event plot shown in Linesin|Figure 11]ending in an * indicate
failures. Lineswitha — * at the end are units that had not failed at the time that the data were analyzed.
The numbers indicate the observation multiplicity for those observations that have counts greater than one.
In the case of the fan data, there is a complicated pattern of reported failure times and right-censored

observations resulting from the different amounts of operating time for the systems in which the fans had
been used.
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Figure 11 Life data event plot for the fan data.

3.2 Nonparametric estimation of the failure-time cdf

Using SLIDA s Single distribution life data analyses sp Plot nonparametric estimate of
cdf and confidence bands brings up the dialog box in
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Figure 12 Dialog box for requesting a plot and table of the estimated fraction failing as a function of
time.

Then choose life data object Fan.ld (the only required input), put a check in “Print table” and click
“Apply. Thiswill produce aplot like that in[Figure 13]and a table of the nonparametric estimate and
confidence intervals for the fraction failing as a function of time. The estimates are computed using the
Kaplan-Meier estimator. When data have complicated censoring pattterns such as interval-censored
observations with overal pping intervals a generalized version of the Kaplan-Meier estimator, known as the
Peto/Turnbull estimator is used instead, as described in Section 3.10 of Meeker and Escobar (1998).
Chapter 3 of Meeker and Escobar (1998) describes the methods for computing nonparametric estimates and
corresponding confidence interval /bands from censored data (including complicated arbitrary censoring)
and provides references and examples corresponding to these SLIDA capabilities.
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Fan Failure Data
with Nonparametric Simultaneous 95% Confidence Bands
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Figure 13 Plot of estimated fraction failing as a function of timefor the turbine fans.

provides atable of the nonparametric estimates from the turbine fan data, along with standard errors
and approximate 95% pointwise confidence intervals.

Table 2 Kaplan-M eier nonparametric estimate of the fraction failing as a function of time for the
turbinefans.

Nonparanetric estimates from Fan Failure Data
wi th approxi mate 95% poi ntwi se confidence intervals

Hour s- 1 ower Hour s- upper Fhat SE_Fhat 95% Lower 95% Upper
0

1 450 0. 00000 0. 00000 NA NA
2 450 1150 0.01429 0.01418 0.002009 0. 09449
3 1150 1600 0.04328 0.02444 0.014024 0. 12577
4 1600 2070 0.05800 0.02815 0.021934 0. 14459
5 2070 2080 0.09225 0. 03607 0.041857 0.19121
6 2080 3100 0.10938 0.03925 0.052811 0.21291
7 3100 3450 0.12833 0. 04274 0.065085 0.23742
8 3450 4600 0.14770 0.04597 0.078091 0.26173
9 4600 6100 0.17277 0.05100 0.094016 0. 29593
10 6100 8750 0.20458 0.05812 0.113253 0. 34122
11 8750 11500 0.29296 0.09804 0.140791 0. 51166

When using SLIDA, it is often better to click on “ Apply” rather than on “ OK” to request an analysis. Then
minimize the dialog box to better see the results. Then to modify the analysis, restore the dialog box, make
desired changes, click “ Apply,” and minimize the dialog box again. When completely done with the dialog
box, click “Cancel.” If one uses “ OK” instead, it will be more difficult to modify previous analyses, as
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certain steps in the analysis specification would need to be retraced. SPLUS allows one to choose a
previous dialog box state by clicking on the buttons at the bottom of the dialog box. When doing this,
however, S PLUS does not properly restore whether entriesin the dialog box are active or inactive

3.3 Probability plotsand distribution assessment

Probability plots are one of the most important tools for reliability data analysis. The ideas and concepts
underlying probability plots, along with alarge number of examples, is given in Chapter 6 of Meeker and
Escobar (1998). The basic ideaisto plot arepresentation of a nonparametric estimate of the fraction failing
as afunction of time (traditionally, this estimate has been a set of points) on special distribution-dependent
nonlinear plotting axes on which the specified theoretical distribution would plot as a straight line.

Use SLIDA s Single distribution life data analyses sp Probability plot with
nonparametric confidence bands to bring up the basic probability plot dialog, illustrated in
14. Again, choose the life data object Fan.Id, choose “6 distributions,” click “Apply,” and iconify the dialog
box. Thiswill make a six-distributions probability plot like the one in[Figure 15| from which one can
visually compare several different distributions including the popular Weibull and lognormal distributions.

Probability Plot with nonparametric confidence intervals [_ |} |
Basic | Plat Optionz | kdadify Plat .ﬁ.:-:esl
— Required — Some optionz
Life data object; Percent confidence level:
Dption; = Choose dist Humber of digits in tables:

& B digtiibutions |4
Save results in; I.Iast.cdfest
[ttt IE digtributions vI

— Monparametric COF estimates
— Al life data objects ol el

™ Include in data object list?

0K | cancel | apply | k| ] curent Help |

Figure 14 Dialog box requesting the 6-distributions probability plots with (default) simultaneous
confidence bands.
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Fan Failure Data
Probability Plots and Simultaneous 95% Confidence Intervals
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Figure 15 Six-distributions probability plots with simultaneous confidence bands.

Now, restore the dialog box in[Figure 14] change to “Choose dist,” and choose a particular distribution
(e.g., lognormal), and click “Apply.” Thiswill create the probability plot, shown in that will
allow one to focus the reasonableness of the specified distribution as amodel for the data. By default,
simultaneous confidence bands are also provided. See Sections 3.8 and 6.3 of Meeker and Escobar (1998)
for technical details, references, and other examples of these simultaneous confidence bands.
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Figure 16 Lognormal probability plot with simultaneous confidence bands.

Chapter 6 of Meeker and Escobar (1998) provides theory and a detailed description of methods for
interpreting these probability plots. If one can draw a straight line through the simultaneous confidence
band, for the chosen distribution (lognormal in[Figure 16), then there are lognormal distributions that are
consistent with the data. Then it is not possible to rule out the possibility that the data were generated by a
lognormal distribution. One should, of course, try other distributions and compare results.

isasnapshot of the SLIDA & Single distribution life data analyses part of the SLIDA
menu. The SLIDA menu items (shown on the left) correspond to different tasks/analyses (e.g., plan a life
test, analyze single-distribution life test data, compare two different populations, etc.). The SLIDA submenu
items (shown on the right) are organized according to the order in which a complete analysis would be
done, typically starting with simple graphical methods and then progressing to model fitting, graphical
display of model-fitting results, and sensitivity analyses.
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Figure 17 View of the SLIDA menu showing the optionsfor single distribution analyses.

3.4 Maximum likelihood estimation of the failure-time cdf

Using SLIDA & Single dlstrlbutlon life data analyses sp Probability plot with parametric
ML fit produces the dialog in Figure 18] This dialog allows the user to request a probability plot showing
the ML estimate for the chosen distri butlon (plotted as a straight line) along with the points usually plotted
in the probability plot.

Parametric ML Fit on Probability Plot M= E3
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— Required — Some optionz

Life data object: [" Fix shape parameter?

IFE'H'h:| 3 thieh sfape parametent
Dptior; ¥ Choose dist Isigma ‘I
" B disgtributions Shape parameter I

Distributian: ILDgnDrmal vI [ SiEme gt

Percent confidence level:

— &l life data .DbiEDtS - IEIE—

[ Include in data object list?

MHurnber of digits in tables:

|4
Save rezultz in; Ilast.mlepmbplnt

ok | cancel | appyy | i [ curent Help |

Figure 18 Dialog box for getting a probability plot with an ML fit.

By default, SLIDA aso plots a set of normal-approximation 95% pointwise confidence intervals. These
intervals allow one to obtain a visuaization of estimates of both failure probabilities and distribution
guantiles and the associated statistical uncertainty due to limited sample size. One of the back pages in the
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dialog box, shown in allows the user also to obtain a plot of the corresponding

parametric ML estimate of the hazard function versus time. A table of the hazard function estimates and
corresponding confidence intervals is also available. The resulting probability plot with ML estimates is
shown in and the plot of the hazard function is givenin Chapters 2, 7 and 8 of Meeker
and Escobar (1998) give the theory and methods for understanding functions and using the corresponding
analyses.

Parametric ML Fit on Probability Plot

B azic | Plot Optionz |h"|l:ll:|i|:_'.-' F'I-:ut.-ﬁ-.:-:esl Tal:uularl:lutputl Hazard

—Hazard funchion estimate
W Flot of the hazard function

—Hazard function plat options
[ Log time axis?

[ Log hazard axiz?
[ Hazard function in FITS?
[ Grid on plat?

— T able af the hazard funchon
[ Frint the table?

— iz limits
[T Change axis limits?

Speaitin|owen end point af b e

I.-'l'-.utnmatic

SRR WEEEn EfdE et ahe S
I.-‘-‘-.utu::matiu:

Specii Ewen endpoit ahiyarE:

I.-‘-‘-.utu::matiu:

V2 =t 0 | = = L =

I.-'l'-.utnmatic
— Az labelz

[T Change aiz labels?

A= o = = I.-'l'-.utnmatic
Q. I Eancell .-i'-.ppl_l,ll I<| >| currert Help |

Figure 19 The Hazard page of the probability plot with ML fit dialog, allows the user to request and
customize a plot of the hazard function ML estimate.

[Table 3]gives tabular output from fitting the lognormal distribution to the fan data. The lines with the Greek
letters mu () and sigma (o) are, respectively, ML estimates for the mean and standard deviation of the
distribution of logarithm of fan life. Standard errors and 95% normal-approximation confidence intervals
are also given.

Table 3 Lognormal ML estimation resultsfor the turbine fan data.

Fan Failure Data

Maxi mum | i kel i hood estimation results:
Response units: Hours

Lognormal Distribution

Log likelihood at maximum point: -134.5

Par anmet er Approx Conf. Interval
MLE Std. Err. 95% | ower 95% upper
mu 10.14  0.5211 9.122 11. 165
sigma 1.68  0.3893 1. 066 2. 645
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Fan Failure Data
with Lognormal MLE and Pointwise 95% Confidence Intervals
Lognormal Probability Plot
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Figure 20 Lognormal probability plots of the fan data showing the ML estimate and parametric
pointwise confidence intervals.
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Figure 21 Lognormal hazard function estimate for the fan data.

3.5 Likelihood contour/per spective plot

Using SLIDA & Single distribution life data analyses s Likelihood contour/perspective
plot produces the dialog box shown in This dialog box allows the user to request either a
contour or a perspective plot of the relative likelihoood function or the corresponding joint confidence
region (described and compared in Sections 8.2 and 8.3 of Meeker and Escobar,1998) for a given set of
data. Alternatively, one can request a perspective (or wire-frame) plot of the relative likelihood function.
The dialog has an option to indicate the position of the ML estimates as well as the usual options to control
plot axes.

The dialog box shown in aIIowsthe user to request either a perspective plot or acontour plot
showing the approximate joint confidence region for the paramters of a log-location-scale or location-scale
distribution. Weiillustrate the use of this dialog box with the the bearing cage data (life data object
BearingCage.ld) from Abernathy et al. (1983). [Figure 23]shows the perspective plot of the relative
likelihood, followed by the contour plot of the joint confidence region in|Figure 24
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Likelihood contour/perspective plot
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Figure 22 Dialog for requesting a contour or per spective plot of the bearing cage likelihood function.
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Bearing Cage Failure Data
Legnarmal Distribution Relative Likelihood

Figure 23 Per spective plot of therelative likelihood function for lognormal parameters based on the
bearing cage data.

Notice the “shark-fin” shape of the relative likelihood in This reflects the strong positive
correlation between the ML estimators of the lognormal parameters; this correlation is the result of the
heavy right censoring in this data set. The contour plot of the joint confidence region for the lognormal

parameters shown in Figure 24]is easier to interpret.
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Bearing Cage Failure Data
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Figure 24 Joint confidenceregion for lognor mal parameter s based on theréative likelihood function
for the bearing cage data.

3.6 Comparison of ML estimatesfrom different distributions

The dialog box produced by Single distribution life data analyses @p Compare distribution
ML fits on probability plot, shownin allows the comparison of ML estimates for a chosen
baseline distribution with one or more other distributions. The required inputs are the life data object (for
the following example we continue to use the BearingCage.ld life data object), the baseline distribution, and
the comparison distribution.
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Compare single distribution ML fits on probability plot
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Figure 25 Dialog box requesting a comparison of the lognormal and Weibull ML estimates on
lognormal probability paper.

The objective of the analysis of the bearing cage data was to estimate life out to 10,000 hours. In order to
do this, the Plot Options page of the Compare ML fit dialog box, shown in [Figure 26] is used to request

extrapolation outside of the range of the data, as shown in
then produce the desired comparison probability plot shown in

igure 26| Clicking on “OK" or “Apply” will
(changing the range using the

options in the Modify Plot Axes page of the dialog box will change only the axis range and not the range of

cdf evaluation).
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Compare single distribution ML fits on probability plot
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Figure 26 Plot Options page of the Compare ML fit dialog showing how to extend the range of cdf
evaluation
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Figure 27 Lognormal probability plot comparing the lognormal and Weibull ML estimates for the
bearing cage data.

Thereislittle difference between the probability estimates up to 1000 hours. Note, however, the large
difference between the lognormal and Weibull estimates of fraction failing outside the range of the data.

3.7 Fitting a log-location-scale (location-scale) distribution with a given shape
(scale/slope) parameter

In some applications, especially when the amount of datais limited, it may be useful to fit adistribution

with a given shape parameter. Although it is rare that one would know such a shape parameter exactly, such

evaluations are useful if one repeats the analysis using different values of the given parameter within a given

ranges, perhaps based on previous experience with a similar failure mode. More details are given in Section

8.5 of Meeker and Escobar (1998).

Fitting alocation scale or log location scale distribution with a fixed shape (dope) parameter is easy in
SLIDA. To illustrate this, we will continue with the bearing cage example. For the bearing cage data, the
wide confidence intervals for F (t) outside of the range of the datain aredue, in large part, to the
fact that the lognormal shape parameter is unknown and that there is only a small amount of data available.
Important improvement in precision can be obtained by specifying a value for the shape parameter. Using
SLIDA & Single distribution life data analyses sp Probability plot with parametric ML

fit produces the dialog in
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Parametric ML Fit on F"ruhahilit_v Plot
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Figure 28 Dialog box showing how to fit a Weibull distribution with a fixed shape (sope) parameter.

The resulting probability plot is given in|Figure 29
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Bearing Cage Failure Data
with Weibull MLE and Pointwise 95% Confidence Intervals
Weibull Probability Plot
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Figure 29 Bearing cage Weibull probability plot with thefixed =2 ML estimateline.

Notice that the confidence interval linesin the Weibull probability plot are parallel. Thisimplies that the
intervals will be narrower outside of the range of the data. Of course, this would provide a false sense of
precision if the Weibull shape parameter (not to mention the assumption of a Weibull distribution itself)
does not provide an adequate approximation to the actual bearing cage distribution.

4. Planning a Single Distribution Study

This section describes tools for evaluating proposed lifetest plans. The tools presented here are based on
theory and methods described in Chapter 10 of Meeker and Escobar (1998).

SLIDA single distribution life test evaluations are done in three stages.

* Inthefirst stage the user specifies the testing situation by providing planning values (essentially,
best guesses for the underlying model, including information on the life distribution, including the
distribution’s parameters values) in the form of a plan value object. Given such planning
information, it is possible to evaluate any specified test plan or plans.

* Inthe second stage one can ask for a plot of approximate required sample size as a function of
desired precision. This evaluation, based on large sample approximate variance computations,
allows the test planner to see, at a glance, the effect of sample size for a given test length (as
specified by time for Type | censoring number of test units for Type Il censoring).

* Inthelast stage of evaluation, one can simulate a specified test plan a specified number of times.
Plots of the samples from afew of the individual simulated experiments and a summary of ML
estimates from all of the simulations (both presented on appropriate probability plots) provides a
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visualization of the possible results from alife test experiment and the reasons why estimates of
certain quantiles might or might not be estimated precisely.

4.1 Specifying test planning infor mation (planning values)

Using SLIDA & Plan Single Distribution Analyis sp Specify test planning information
(planning values) brings up the dialog box in allowi ng the user to specify planning values
needed to evaluate and compare different life test plans. The default name for the planning value object is
last.xxx.pv where xxx is the chosen distribution. Generally it is a good idea to edit the suffix “last” to be
something that describes the actual application (in the example below we use DeviceP). This “planning
value object” will be used in the simulation/eval uation stage of planning. To specify the required
distribution-parameter plannning values, start by choosing a method: a) point and slope or b) two points.
Either method can be used to specify aline on a probability paper (with an underlying assumed
distribution). For DeviceP, the engineers expect approximately 10% of the tested unitsto fail by 1000 hours
and that the failure time distribution will be adequately described by alognormal distribution with a shape
parameter sigma (o) in the neighborhood of 2. After specifing the needed information, click “Apply” and
examine the resulting probability plot reflecting the inputted information, asillustrated in the Figure 31]
Some tabular information is also provided in[Table 4]

Specify test planning information [planning valuesz] [ _ =] |
Bagzic |
— Basiz inputs — Probahility at zecond zpecified time——

Save results in: IDEViCEP.LDghDrm e pEitt 2 I

Diztribticn; ILDgﬂDrma| vI Failune pratatiio 2
Time units: ITime itz I

— Specify shape [zlope] paranmeter

— Choosze gpecification method
. I r
Specification method? Wwhich shape parameter

IF'Dint and zlope vI Isigma j’
: - o Shape parameter: IE

— Required prabakility at zpecified time——

Time paint 1: |1 Q00 — Dptional inputs

¥ Grid on plot?

Failure probability 1:

K

ok | cancel | apply | i [ curent Help |

Figure 30 Dialog box for specifying lifetest planning information.
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Lognormal Distribution with mu= 9.471 and sigma= 2
Lognormal Probability Plot
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Figure 31 Probability plot depicting lifetest planning infor mation.

Table 4 Tabular output from the dialog used to specify planning values.

10707

Di stribution: Lognornal
Time units are: Hours

The 0.1 quantile is: 1000

Shape paraneter beta is: 0.5
Characteristic life eta is: 12976 Hour s

m = 9.47
sigm = 2

Fai lure probabilities fromthe Lognornal distribution
Hours fail.probs

le+001 0. 000169
le+002 0.007490
1le+003 0. 100000
le+004 0. 448181
le+005 0. 846381
le+006 0. 985084
le+007 0. 999556

4.2  Plot test planning infor mation (planning values)
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Using SLIDA s Plan Single Distribution Analysis s Plot test planning information
(planning values) allows the user obtain a plot and table, like those in Figure 31land[Table 4} describing a
previously created plan value object.

4.3 Plot of approximate required sample size
Using SLIDA wp Plan Single Distribution Analyis sp Plot of required sample will produce

the dialog box in

Plot of approximate required zample size [_ [ |

Plat Options |

— Required inputs
Plan walues object IDEViCEP.LDgnD vI

[Huantiles to be eztimated:

o

Specify censorng: * Cenzaring time

= Fraction failing

Censanng time: IEEIEIE‘
k. I Eancell .ﬁ.pplyl I<| >| cLment Help |

Figure 32 Dialog box for requesting a required sample size plot.

Note that the most recently created plan value object (within the current session) is remembered and
displayed as the default to be used. Alternatively, a different, previoudly created, plan values abject can be
chosen. Then one must choose a censoring type and either a censoring time or number of failures (for Type
| and Type |l censoring, respectively) and, if desired, a quantileof interest of other than the default of .1.

Clicking on “OK” or “Apply” will produce aplot like the one in [Figure 33 For log-location-scale
distributions (Weibull, lognormal, loglogistic) confidence interval precision is described in terms of afactor

R in that the normal-approximation confidence interval for a quantile has the form [t,/R, t,xR] where
R>1 and the interval is more precise for small values of R (see Chapters 7 and 8 of Meeker and Escobar
1998). For location-scale distributions, precision is given in terms of the half-width of the two-sided
confidence interval.
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Needed sample size giving approximatley a 50% chance of having
a confidence interval factor for the 0.1 quantile that is less than R
lognormal Distribution with mu=9.47 and sigma= 2
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10000 7
5000 1
2000 -
.g 1000 -
7 ]
P 500 ]
o

% 200 §
? 100 1

50 - 99%

| 95%

20 90%

10 E 80%

1.0 15 2.0 2.5 3.0 3.5
Confidence Interval Precision Factor R

Figure 33 Plot giving sample size needed as a function of the target confidence interval precision
factor.

For example, [Figure 33]shows that a sample size of approximately 70 is required to have a 95% confidence
interval target precision factor of 2. The actual precision factor R, because it depends on the data, is random
for any given life test, but should be no more than the target value with probability of approximatley .5. To
get asense of how much R might vary from the target value, one can use the simulation tool described in
Section.4

44 Lifetest smulation

Although the plot of required sample size versus precision factor is useful for determining the approximate
sample size needed for alife test, simulating the life test avoids large sample approximations, provides more
insight into the results that might be obtained, and gives one a better sense of the trade-off between sample
size and test length. Using SLIDA sp Plan Single Distribution Analyis sp Simulate a life test
requests a dialog box like that shown in This dialog box allows one to specify the inputs needed
to produce a simulation of a user-specified life test plan.




Simulate a life test = !
Baziz | Plat Opticnz |

— Required inputs —Some Options

Flan walues object IDEViEEP‘.LDgnD "’I Percentile line at: iﬂ.'l

Sample size I?U Number of Simulations:
— Cengaoring type and specification |3D

Type of censaring ITime [Type 1] vI Yieww detail for how many samples?
Cenzoning time? |2I:IEIEI |3

Humter of failes 7y Save rezults in IDeviceP.LDgnnrm
k. I Eancell .-'f-.pplj,ll I<| >| current Help |

Figure 34 Dialog box to request a life test smulation.

The user specifies the number of unitsto be tested (“ Sample size”) and length of test (“Censoring time” for
time or Type | censoring) or number of unitsto fail (for failure or Type Il censoring) and, perhaps some
other optional inputs (e.g., which quantile of the distribution is of primary interest). One can choose to look
at the individual samples from some of the simulated samples by entering a small integer (usually 5or 6is
sufficient) into the box marked “View detail for how many samples?’ If aninteger k> O isgiven in this
cell, then after completion of the simulation, the graphsheet will contain k probability plots showing the
planning value line (with a dark thick line) along with the observed failures and the ML estimate line (athin
line to contrast with the “true” planning value line) for each of the k samples. provides an
example of such aplot. It isinteresting to observe the variability in the failure times and corresponding ML
estimate lines from sample to sample in a sequence of these plots. The final probability plot, illustrated in
contains, in summary, the ML estimates from all of the simulated samples. When a quantile
(number between 0 and 1) is given in the “Quantile line at” cell, ahorizontal lineis drawn at that level on
the probability plot, allowing a visualization of the sampling variability in the estimates of that quantile, and
the average precision factor for the confidence intervals for the corresponding confidence intervalsis shown
in the plot.

34



Simulated life test of size n = 70 : Lognormal Distribution with mu= 9.47 and sigma= 2
Lognormal Probability Plot
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Figure 35 Probability plot and ML estimate for thefirst simulated lifetest.

Figure 35]shows the probability plot for the first simulated sample. Generally looking at three or four of
these individual simulation results (we only show one here) is sufficient for getting a good idea how the
samples in the proposed life test might behave (assuming that the inputted planning information is
reasonably accurate).
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30 simulated life tests of size n = 70 : Lognormal Distribution with mu= 9.47 and sigma= 2
Lognormal Probability Plot
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Figure 36 Summary showing ML estimatesfor all 30 life test simulations.

Figure 36]shows a summary of the ML estimates from 30 simulations. The average precision factor printed
in this simulation-summary plot will vary somewhat from simlation to simulation unless the number of
simulationsis very large (e.g., 1000's of simulated life tests). Nevertheless, this numerical summary of the
simulation provides a useful measure of sampling variability and the corresponding precision that one can
expect to seein the results of one'slife test.

45 Probability of successful demonstration

After conducting alife test, a successful demonstration of reliability has occurred if the lower confidence
bound on reliability exceeds the given standard g=1-F(t) [which is the same as the upper confidence bound
on fraction failing being less than a standard p=F(t)]. Equivalently, the demonstration is successful if lower
confidence bound on on the corresponding p quantile of the life distribution is larger than the corresponding
standard (e.g., for demonstrating 95% reliability, the standard would be based on the .05 quantile of thelife
distribution). For alog-location-scale distribution, the probability of a successful demonstration for atype |
censored life test (test run until a specified number of unitsfail) is afunction of the level of reliability to be
demonstrated, the number of units to be tested, the number needed to fail, and the underlying true
reliability.

SLIDA has atool to allow one to compute and make plots of the probability of successful demonstration.

The dialog box in allows the user to specify the necessary inputs. In sample sizes
n=20,30,40 with corresponding number failing r=10,15,20 (i.e., 50% failures) were chosen. In general, the
number failing r must be at least 2 but no greater than n. The probabilities of successful demonstration are
computed via simulation. The default number of simulations was increased from the default 300 (which
allows quick but rough evaluations) to 1000, which is good enough for most practical purposes (although 3
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or 4 thousand simulations might be used to make a publication-quality figure). The default reliability to be
demonstrated was changed from the default 0.5 to 0.9.

Pr{Succeszful Demonstration] curves M= |

[nputs | b odify Plak .-'-‘-.:-cesl

— Mew simulation or exizting results — Uze previous resultz
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" Exizting results I vI
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Figure 37 Dialog box for requesting the computation of probability of successful demonstration
curves from g=0.9.

k. | Eann::ell

isaplot of the probability of successful demonstration as afunction of the actual (unknown)
reliability. As expected, it is easier to make the demonstration (i.e., the probability of successis higher) if
the actual reliability is much larger than the standard to be demonstrated.
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Demonstration that Weibull distribution reliability
exceeds 0.9 with 95% confidence
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Figure 38 Weibull life test probability of successful demonstration curvesfor g=0.9.

After completing a simulation to compute the probability of successful demonstration, SLIDA will save the
simulation results as an object, making it possible to reuse the results to make evaluations for other given
values of reliability as the standard. shows a dialog box in which the results from the previous
simulation will be used to compute another set of probability of successful demonstration curves with
g=0.7. From this dialog box it is also possible to choose from among the n,r combinations used in the
previous simulation to limit the number of curvesto appear on the plot.
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Figure 39 Dialog box using existing results (previously computed simulation) to compute probability
of successful demonstration curvesfor g=0.7.

The resulting plot is shown in As expected, the required sample sizesin this plot are smaller
because of the less demanding demonstration.
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Demonstration that Weibull distribution reliability
exceeds 0.7 with 95% confidence
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Figure 40 Weibull life test probability of successful demonstration curvesfor g=0.7.

5. Analysis of Data with More Than One Cause of Failure

Both laboratory life tests and field-failure reporting systems (e.g., warranty repair processes) result in data
with more than one failure mode. For example, a system may have several components and the failure of
any one of these components could cause the system to fail. For many purposes, it isimportant to use
failure mode information in the analysis and interpretation of one’'s data. Thisis especially true when the
purpose of the analysisis to identify opportunities for improving product reliability.

One commonly used model for multiple failure modes supposes that each unit has a “potential” failure time
for each of the possible “modes” of failure and that the distribution of these failure times can be described
with ajoint distribution. When it can be assumed that the different potential timesto failure are
approximately statistically independent, this modeling approach provides a simple method of modeling and
analysis that allows estimation of the failure time distribution for any particular failure mode or for the
entire system with any specified combination of failure modes active. See Chapter 15 of Meeker and
Escobar (1998) for technical details and other information about the analysis of such data.

5.1 Summary analysis of individual failure modes

Consider the Device-G data described in Section 15.4 of Meeker and Escobar (1998). The devices that
failed during the study failed from either a surge or awear out failure mode. The underlying mechanisms
causing these two failure modes were different and it would be reasonable to assume that the times to failure
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for these two different modes would be independent. In order to estimate the failure time distribution of the
individual failure modes, under the assumption that the failure modes failure times are independent, use

SLIDA & Multiple failure mode life data analysis sp Individual modes. Then choose the life
data object (DeviceG.ld in this case) and distribution (Weibull for this example) in the dialog box, as shown

in[Figure 41}

Probability Plot For Individual Failure Modes !EI
Bazic | Plat Optionz |h-1n:u:|if_I,I Flat .-’-\-.:-:esl T abwilar Dutputl
— Required — Some options
Life data object: Fercent confidence level:

IDeviceG.Id vI IEIEI
Dhigtribution: =] MHurnber af digits in tables:

— Alllfe data hiects [4
™ Include in data object list? Save results in: IIast.mIeprDprDt

ok | cancel| apply | 1| [ curent Help |

Figure 41 Dialog box requesting separ ate analyses of different failure modes for the Device-G data.

Other options for graphical and tabular output are available in the back pages of the dialog box. When done,

click “OK” or “Apply,” producing the probability plot with estimated distributions for the two individual

failure modesin Tabular output giving the Weibull parameter estimatesis also provided, as
Table 5

shownin

In this application, management was interested in answering a number of different questions with these data.
Among the requested outputs was the failure-time distribution for the wear out failure mode alone, which
would be the failure time distribution for the device if the surge failure mode could be eliminated. A table of
these estimates (requested with the “ Tabular Output” page of the dialog box) is also shown in
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Figure 42 Analysis of the individual failure surge and wear out failure modes for the Device-G field
data.

Figure 42]shows immediately that the surge failures tend to occur anytime during life, from early to late. No
wearour failures were seen until after 100 thousand cycles. provides a summary of separate ML
estimations for both the Surge and the Wearout failure modes and some additional details for the Wearout
failure mode

Table 5 Summary of ML estimation for Surge and Wearout failure modes and details for the
Wear out failure mode

Response units: Kilocycles

Wi bull Distribution

Li kel i hood eta se_eta beta se_beta
1 Wear out -47.16 340.4 36.14 4.337 1.4506
2 Sur ge -101.36 449.5 191.94 0.671 0.1578

Total |ikelihood= -148.5

Wei bull Distribution Failure Probability Estinmates
From Devi ceG Wearout Failure Mdde Group War out

with Weibull ME and Poi ntwi se 95% Confi dence Intervals
Ki |l ocycl es Fhat Std.Err. 95% Lower 95% Upper

140 0.02098 0.02270 0.002453 0.1574
160 0.03714 0.03330 0.006179 0.1931
180 0.06113 0.04510 0.013764 0. 2330
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200 0.09482 0.05712 0.027638 0. 2785
220 0.13983 0.06853 0.050521 0. 3318
240 0.19722 0.07932 0.084269 0. 3961
260 0.26718 0.09088 0.128000 0. 4752
280 0.34864 0.10569 0.176941 0.5713
300 0.43911 0.12529 0.224124 0.6797

5.2 Combined modes (series system) analysis

SLIDA also computes estimates of the series-system failure-time distribution with all failure modes
operating. To do this, use SLIDA sp Multiple failure mode life data analysis @p Combined
modes and again choose the life data object and distribution and click “OK” or “Apply,” producing the
probability plot with estimated distribution for the system with both failure modes active, shown in
43

Seres System Combined Failure Mode MLE's
Dewvice-(o Fleld Data
Wielbull Protability Plot

el

b3 ke im ~g ip B

0

03 =
023 o

m

fulns
003

Fraction Failing

am
2 8 0 Fal &l 100 201 s00
Kilocycles -

Figure 43 Series system competing risk analysisfor the Device-G data.

5.3 Creating life data objectsfor individual failure modes
Using SLIDA s Multiple failure mode analysis @p Make life data objects for individual

failure modes will bring up the dialog box in allowing the user to create separate life data
objects for each failure mode in the multiple failure mode life data object.
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Make life data objects for individual modes [ _ 1] I

r Required

I Life data object:

k. I Eancell .-i'-.ppl_l,ll I<| >g CLment Help |

Figure 44 Dialog box to ask that individual life data objects be made for individual failure modes.

Names for the life data objects are chosen automatically by appending the failure mode name to the root of
the failure mode life data object name (DeviceG.Surge.ld and DeviceG.Wearout.ld in the example). Once
these individual life data objects have been created, all of the SLIDA methods for single-distribution
analyses can be applied to the analysis of the individual failure modes, under the (important) assumption
that the individual failure modes are acting independently.

6. Comparison of Distributions Life Data Analysis

Experiments are commonly conducted for the purpose of comparing the life distributions of different or
competing materials, formulations, designs, manufacturers, and so on. Similar data arise from warranty data
and field tracking studies. The analysis methods presented here for such data generalize methodsin classical
dtatistical methods commonly known as two-sample comparison and one-way analysis of variance. SLIDA
generalizes these methods, allowing for censoring, non-normal distributions, and comparisons with non-
constant shape (slope) in the distributions being compared.

6.1 Comparison with different shape (slope) parameters

Using SLIDA s Comparison of distributions life data analysissp Probability plot and ML
fit: different shapes (slopes) bringsup adialog box like that ini ng for input of a
comparison life data object and a distribution, as shown below. A comparison life data object isalife data
object that contains at least one categorical explanatory variable (in S-PLUS, an explanatory variableis
assumed to be categorical (a“factor” in SPLUS jargon) if it contains any al phabetic characters). The Life
data object list will contain al of the “comparison life data objects’ found in the SLIDA data base or in
the user’slocal data base. As done for single distributions life data objects, comparison life data objects are
created by using the SLIDA sp Make data object @p Make life data object part to the SLIDA
menu. If there is more than one categorical explanatory variable in the comparison life data object, then one
needs to choose which one to use in the comparison. The following example uses the Snubber data (life
data object Snubber.ld) from Nelson (1984), page 529 and reanalyzed in Examples 17.13t0 17.15in
Meeker and Escobar (1998), comparing two different Snubber designs (a snubber is atoaster component).
Following these previous analyses, the normal distribution isfit to the data.
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Figure 45 Dialog box requesting comparison of the Snubber data with separate normal distribution

standard deviations.

Plot and output options, similar to those in the other dialogs boxes, are available on the back pages of
dialog boxes like that shown in After the needed and desired optional inputs have been given in

the dialog, click on “Apply” to do the analysis.

Figure 46]gives the resulting individual probability plots for each (in this case both) of the samplesin the
the data set. [Table 6|gives atabular summary of the results. Tests or confidence intervals to compare
particular quantiles or other parameters are easy to construct, following the general approach givenin

Section 17.8 of Meeker and Escobar (1998).

Table 6 Normal distribution ML estimates for the Snubber data with separate normal distribution

standard deviations.

Snubber Failure Data

Maxi mum | i kel i hood estimation results:
Response units:
Nor mal

Desi gn Li kel i hood

Toaster Cycles
Di stribution

mu

1 ad -146.8 908.1 76.19 362.4
2 New -138.6 1126.6 123.21 546.0
Total likelihood= -285.4

se_mu sigma se_sigma

63.4
99.5
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Snubber Failure Data
With Individual Normal MLE's
Normal Probability Plot
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Figure 46 Normal probability plot comparing the new and old snubber designswith separate normal
distribution standard deviations.

6.2 Comparison of likelihood contour plots

Using SLIDA & Comparison of distributions life data analysissp Comparison likelihood
contour plot brings up adialog box like the onein allowing one to specify a comparison life
data object and distribution in order to produce corresponding two-parameter contour plots for each of the
groups being compared. shows a comparison contour plot of normal distribution joint confidence
regions for p and o for the Snubber data.
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Comparizon contour plots [_ |} |
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Figure 47 Dialog box requesting contour plots comparing the new and old snubber designs assuming
separate normal distribution standard deviations.
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Snubber Failure Data
Individual Normal Distribution Joint Confidence Regions
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Figure 48 Contour plot showing joint confidence regions for the normal distribution parameters for
the two different snubber designs.

The SW to NE orientation of the contoursin isaresult of the right censoring. The degree of
overlap provides an aternative visualization of the statistical “closeness’ of the parameters of the life-time
distributions for the two different snubber designs.

6.3 Comparison with common shape (slope) parameters

For some applications, it is reasonable to model the different populations or processes being compared as
having the same shape (or slope) parameters, differing only with respect to scale (for alog-location-scale
distribution) or location (for alocation-scale distribution). This tends to simplify the analysis because the
equality of any particular distribution quantile would imply the equality of other distribution quantiles (this
can be seen by noting that, with this assumption, cdfs plotted on probability paper are parallel).

Using SLIDA & Comparison of distributions life data analysissp Probability plot and

ML fit: common shapes (slopes) brings up a dialog box like that shown in This dialog
box is similar to that used for the comparison with non-common shapes (sl opes).
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Compariszon Probability Plot [common shape/slope]
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Figure 49 Dialog box requesting a probability plot comparing the new and old snubber designs
assuming a common normal distribution standard deviation.

Asbefore, choose a“life data object” (by default SLIDA putsin thelist only life data objects with a
comparison or factor explanatory variable) and a“distribution.” An estimate of the model parametersis
given in the S-PLUS report window. The right-most back page of the dialog box provides a dialog that
allows one to obtain a plot of the estimated model (a“model plot”, sometimes also called a*“ stress plot”
when the explanatory variable is a stress variable). Tables of estimates of distribution quantiles and failure
probabilities are also available among the options in the back pages of the dialog box. These tabular and
graphical outputs for the Snubber data common standard deviation analysis are given in [Table 7|and|Figure |
50.
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Figure 50 Normal probability plot comparing the data from the new and the old Snubber design
assuming normal distributions with a common standard deviation.

The probability plot in|Figure 50]shows nonparametric estimates of the life time distributions for both
snubber designs along with ML estimates of the assumed normal distributions. The lines representing the
ML estimates of the cdfs for the two designs are parallel because of assumption of common normal
distribution standard deviations. For the normal distribution, the slope corresponds to the reciprocal of the
standard deviation of life, which is also a scale parameter.

Table 7 Normal distribution ML estimates for the Snubber data with a common normal distribution
standard deviation.

Snubber Failure Data
Maxi mum | i kel i hood estimation results:
Response units: Toaster Cycles
Normal Distribution
Rel ati onship
1: class

Log likelihood at maximum point: -286.7

Par anmet er Approx Conf. Interval
MLE Std. Err. 95% | ower 95% upper
I ntercept 974.63 89.11 800.0 1149.3
Desi gnNew 86.67  114.21 -137.2 310.5
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57. 67 358. 4 586. 7

The table reproduced in gi ves ML estimates and standard errors for an underlying dummy variable
regression model used to distinguish between the two different designs (see Section 17.8 of Meeker and
Escobar for a detailed description of this model). The Intercept row corresponds to the “baseline” category
(old design in this case) giving the estimated parameter for the corresponding distribution (mean of the
normal distribution in this case). The Desi gnNew row in the table gives the ML estimate of the difference
in mean life between the baseline and the new design. The 95% approximate confidence interval for the
Desi gnNew coefficientis[- 137. 2310. 5] . Thisinterval iswide enough to contain O, indicating that the
observed difference between the two designs could well have been caused by the random variability in the snubber life
distributions. The last row in the output gives the estimate of the normal distribution standard deviation, whichis, in

the model, assumed to be the same for both designs.

The model or “stress plot,” shown in plots estimates of the normal distribution density functions
and distribution quantiles. This figure shows clearly that the observed difference in the designsis dominated

by the variability in snubber life.
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Figure 51 " Stress plot" showing the estimated normal distribution densities for the new and the old
snubber designs assuming a common normal distribution standard deviation with response on the

horizontal axis.

6.4 Makelifedataobjectsfor individual groups
After comparing different groups, it is often desired to select one or more of the groups for more focused

analysis. It is possible, for example to choose a particular group or groups and do single-distribution
analyses for them. We will illustrate this by making a separate life data object for the New snubber design.
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Using SLIDA s Comparison of distributions life data analysissp Make life data objects
for individual groups brings up the dialog box in|Figure 52

Make life data object for individual groups [_ |} |
Bazic
— Choose life data object—————— -~ Chooze explanatory variable(z)

Life data object; [Ehomze explanaton wanahlelz]

— &l data objectz
[ Include it data object list?

Level(z] or combination(z] of levels

Oid -

-,

— Choosze output life data object name ——

Save rezults in; ISnubber.NewDesi
Q. I Eann::ell .-'1'-.|:||:|I_I,I| I<| >| currernt Help |

Figure 52 Dialog box used to choose a data subset for a new life data object

For the example, we choose the Snubber.ld comparison life data object. Design is the only explanatory in
this life data objects, so it is automatically highlighted. Then choose “New” under the list of available levels
(or in general combinations of levels). A name for the output data object is chosen automatically when the
level(s) or combinations of levels are chosen, but it is possible to edit this name. Clicking on “OK” or
“Apply” will execute the function to produce the new data object. For the example, the message “ Saving
subset data object Snubber.NewDesign.ld” is printed and this data object will appear subsequently in
the lists of single-distribution life data objects.

6.5 Probability of correct selection

When planning alife test to compare two or more distributions, an important consideration is the sample
size needed to make the comparison. For example, when comparing two different designs (as in the snubber
example) if one only tested two units from each design, it is unlikely that the experiment would indicate a
statistically significant difference, even if there were a difference of practical importance. Thus we would
not have the information needed to choose one design over the other. Correspondingly, if the experiment
had used 10,000 units of each design, it would be highly likely that any difference of practical importance
(or indeed, small differences that would not be important!) would be detected with high probability.
Additionally, when comparing life distributions, one also needs to decide how long to run the test.
Generally it will not be possible to wait until all units have failed. An important part of planning the
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experiment is to determine how long to run the test or, alternatively, how many of the tested units need to
fail before a decision should be made.

Typically, in comparative experiments, with all other things being equal, a decision would be made to
choose the design that gives the best results in the experiment. Such a decision rule would have the largest
probability of making the correct decision. When planning such an experiment it is important to have some
idea about the actual probability of making a correct decision. An assessment of this probability can be
obtained by using SLIDA sp Comparison of Distributions sp Probability of correct
selection for specified test plans.

In the dialog box in one specifies the assumed distribution, the number of populations to be
compared, as well as the sample sizes (separated by commas) and the corresponding number to fail within
each sample size. Then, aswith other SLIDA dialog boxes, click “Apply” and iconify dialog box.

Prlcomect selection] curves M= |

[HpLts | kadity Plat .-'-‘-.:-:esl

— Required inputs Optional inputz

Distributian: ILDgr‘lDrma| - I Mumber of Simulations:

MHurber of populations to compare? 300

|2 ¥ Grid on plot?

Separate numbers with commas

it the following lists

Lizt sample zize for each population:

I E0.30.15
Lizt nurmber failing for each population;
I 20105

[Largest an Smallesty.

IEhu:n:use largest "I
ok | cancel| apply | 1| [ curent Help |

Figure 53 Dialog box requesting a probability of correct selection comparison of three different
proposed comparison lifetests.

Depending on how many simulations have been requested, the complete simulation may take a substantial
amount of timeto run. Periodic messages will be printed in the report window however, to give an
indication of the simulation’s progress. Separate simulations are required for each sample size/number of
failures pair and the computational time is approximately proportional to the number of failures.
illustrates the output, giving a Probability of Correct Selection curve for each combination of sample size
and number of failures, as afunction of the standardized difference d. See Escobar, Pascual, and Meeker
(2000) for more information on how to choose d.
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Probability of Correctly Selecting the Largest
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Figure 54 Plot showing the probability of correct selection as a function of the standardized
difference between the populations being compar ed.

Thejaggednessin the linesis due to the limited number of simulations that were done in this example, but
such simulations are quick and adequate for most purposes. If smoother curves are desired, the simulation
sample size can be increased to somethoong like 3000.

7. Simple Regression (ALT) Life Data Analysis

This Chapter describes methods for analyzing life data when there is a single explanatory variable.
Technical background and further examples illustrating the statistical methods used here are givenin
Chapter 17 of Meeker and Escobar (1998). A common application of the methods in this chapter arisesin
accelerated testing where test units are, for example, tested at high temperature with the purpose of
obtaining reliability information in atimely manner. Models and methods for accel erated testing are
described in detail in Nelson (1990) and Chapters 18 and 19 of Meeker and Escobar (1998). Chapter El
extends the methods of this chapter, allowing for more than one explanatory variable.

7.1 Scatter plot of censored data

One should always look first at available data through graphical displays. For single-variable accelerated
test data, a scatter plot will provide useful information. To illustrate the tools in this section, we use the
Device-A datafrom Hooper and Amster (1990), reanalyzed in Section 19.2 of Meeker and Escobar (1998).
In order to make a scatter plot of the Device-A data, use SLIDA sp Simple regression (ALT) data
analysis sp Censored data scatter plot to bring up the dialog box shown in Then choose
the one of the life data objects from the list. We use the Device-A life data object in this example (only
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those life data objects with explanatory variables appear in the list). There is only one explanatory variable
in the Device-A data object, so it is chosen automatically. Then choose the axis scales for the response and
the explanatory variable. Linear response and linear explanatory variable axes are the defaults, but log and
Arrhenius axes are chosen for this example, corresponding to the physically-suggested lognormal-Arrhenius
accelerated lifetime model, described and illustrated in Chapters 18 and 19 of Meeker and Escobar (1998).

Cenzored Data Scatter Plot [_ |} |
B azic | b adify Plot .-*-.:-cesl
— Required — Al life data objects
Life data object: [T Include in data objsct list?

IDEW::E"&"l':| 3 — Plot Options
Rezponze Units: IH::uurs Tranzformation [awiz] for the rezponze

[Ehomse explanaton wanahlelz] Log d

Transfarmation [axiz] far the explan war

I.i‘-.rrhenius - I

[ Flot rezponse on the =-axis?

[ Grid on plat?

= Title optian: Ifull vI
0K | Cancel | apply | 1| [ curent Help |

Figure 55 Dialog box requesting a censor ed-data scatter plot of the Device-A data.

Finally, click on “Apply” to produce the Arrhenius plot of the data shown in Figure 56
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Device-A ALT Results
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Figure 56 A censored-data scatter plot of the Device-A data.

Notice the nonlinear Arrhenius axis for temperature. The open upward-pointing triangles in the plot indicate
right-censored observations. The number of censored observations at each level of temperature was added
manually with S-PLUS GUI commands. For the Device-A data (as in most examples having heavy
censoring), the censoring makes it difficult to assess the adequacy of the linear relationship between log
time and transformed temperature. Still, however, there is nothing in the plot to suggest that the relationship
does not provide a reasonabl e description of the relationship.

7.2  Group individual probability plots

After loooking at a scatter plot of data from a single-variable accelerated life tests, the next step in the
analysisis usually to make an indivdual probability plot of the data at each level of the accelerating variable
(e.g., at each temperature for the Device-A data). Such a plot can be made by using SLIDA & Simple
regression (ALT) life data analysissp Probability plot and ML fit for individual
conditions to request the dialog box in[Figure 57] Then one chooses the life data object and distribution
(Lognormal was used in this example). Clicking “OK” or “Apply” produces and the multiple
probability plot in[Figure 58]
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Figure 57 Dialog box requesting a lognor mal probability plot for the individual temperature levelsin
the Device-A accelerated test.
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Device-A ALT Results
With Individual Lognormal MLE's
Lognormal Probability Plot
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Figure 58 Lognormal probability plot showing the individual nonparametric and parametric
estimates of life at the different temperaturesin the Device-A accelerated life test.

Figure 58] shows that the lognormal distribution fits the data at each level of temperature. The slopes of the
lines (corresponding to the reciprocal of the lognormal shape parameters) vary somewhat (as expected from
variability in the data), but not systematically. summarizeﬁ the lognormal distribution ML
estimation at each individual level of temperature for the Device-A accelerated life test. At 10 degrees C,
there were no failures so no nonparametric or ML estimates could be computed.

Table 8 Tabular output summarizing lognor mal distribution ML estimation at each individual level
of temperaturefor the Device-A accelerated lifetest.

[1]
Devi ce A data

" Ski ppi ng 10 because too few failures”

Maxi mum | i kel i hood estimation results:

Response units: Hours

Lognormal Distribution

Tenp Li kel i hood mu se_nmu Signma se_sigm
1 10 NA NA NA NA NA
2 40 -115.46 9.815 0.4221 1.0083 0.2737
3 60 -89.72 8.644 0.3474 1.1876  0.3167
4 80 -115.58 7.084 0.2087 0.8046 0.1553
Total Iikelihood = -320.8
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7.3 Group probability plot with common shape (slope) parameter

Many accelerated life test models relate the scale parameter of the life-time distribution (location parameter
of the log life distribution) to the accelerating variable but have the shape of the life-time distribution (scale
parameter of the log-life-time distribution) the same over all levels of the accelerating variable. Some
physical-failure models, such as the Arrhenius relationship, suggest such a statistical model. In order to
check the adequacy of such amodel, it is useful to fit the candidate distribution to the data with a common
shape (slope on a probability plot) assumption. This analysisis similar to that in the comparison-of-
distributions example in Section with Temperature being used as a class variable. This analysis can be
done with SLIDA sy Simple regression (ALT) life data analysissp Prob plot and ML fit for
indiv cond: common shapes (slopes). Thisdialog box, shown in isvery similar to that in

Probability plot for individual levels with common shape/zpread [H[E E3

Basic | Plat Options | kdadify Plat .ﬁ.:-:esl T abular Output I Stregs Plot |
— Required — &l data objects
Life data object: ™ Include in data objsct list?
IDEW:E'{""l':I 3 — Some options
Dption; % Choose dist Percent confidence level;

B diztributions IEIE

Mumber of digits in tables:

Digtribution: Logrormnal - |4—
Choz saplanaiory varizbls(:) Save results i Deviced, durmnng. gr

0K | cancel | apply | 1| ] cument Help |

Figure 59 Dialog box requesting ML estimates at the different temperaturesin the Device-
A accelerated lifetest, with lognormal shape parameters constrained to be the same.
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Specify the life data object and the distribution and click “OK” or “Apply” to obtain the multiple
probability plot in

subset Estimable Subsets Device-A ALT Results
with Lognormal class Model MLE
Lognormal Probability Plot
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Figure 60 Lognormal probability plot showing ML estimates at the different temperatures
in the Device-A accelerated life test, with lognor mal shape parameters constrained to bethe
same.

Note the parallel linesin due to the common [J (standard deviation of log life) assumption in the
fitted model.

The tabular output insummarizesthe lognormal distribution ML estimation for the Device-A
accelerated life test. The estimate bO is the estimate of [, the median of log life for the baseline of 40
degrees C (there were no failures at 10 degrees C, so these data are not used in the present analysis). The
estimates corresponding to Temp60 and Temp80 give the estimated differences pao-teo and pao-pgo- AS
expected, these latter two estimates are negative because of shorter life times at the higher temperatures.
The tabular output in can be used to compare this model fit with the unconstrained model fit to see
if there is strong evidence for a departure from the constant-slope assumption. provides a visual
assessment of this assumption.

Table 9 Tabular output summarizing lognormal distribution ML estimation for the Device-
A accelerated lifetest.

Device A data

Maximum likelihood estimation results:
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Response units: Hours

Lognormal Distribution

Relationship
1:class

Log likelihood a maximum point: -321.5

Parameter Approx Conf. Interval
MLE Std.Err. 95% Lower 95% Upper

b0 9.7543 0.2465 9.2711 10.2374
Temp60-1.2330 0.3119 -1.8443 -0.6217
Temp80-2.6634 0.3484 -3.3463 -1.9806

sigma 0.9656 0.1320 0.7386 1.2623

One can compare the loglikelihoods from fitting the previous two modelsin order to seeif the differences
among the shape parameters at the three different temperature levels could be explained by random
variability. In aformal maner we compute —2[(-320.8-321.5)] = 1.4, which is small relative to 5.99, the .95
guantile of a chi-sguare distribution with 2 degrees of freedom (the unconstrained model had six parameters
while the constrained model had four and thus the difference in dimension is two). This numerical result
suggests that there is not strong evidence of differing slopes.

In addition to the table of ML estimates of the distribution parameters, one can also request atable of failure
probabilities or quantiles for any of the levels of the explanatory variable in the data by using the options on

the Tabular Output of the dialog box in

7.4 Fitting ssimpleregression and accelerated life test models

Accelerated life tests are often conducted for the purpose of using data at higher-than-usual levels of some
explanatory variable to make predictions of life at lower typical or use levels of that variable. A model is
used to describe the effect that the explanatory variable will have on life. For example, when temperatutre is
used to accelerate a failure mechanism related to a chemical reaction, the Arrhenius relationship is often
suggested as amodel to describe the effect that temperature will have on life. The data can be used to
estimate the parameters of this model, as described in Section 19.2 of Meeker and Escobar (1998). Use
SLIDA & Simple regression (ALT) life data sp Probability plot and ML fit of a
regression (acceleration) model to bring up the dialog box in
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ALT Multiple Probability Plot with Fitted Acceleration Model [_ [
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Figure 61 Dialog box used to request a probability plot showing the ML fit of the
lognor mal/Arrhenius acceler ation model to the Device-A data.

For many single-variable accelerated life tests, the model to be used isinitially suggested by previous
experience or physical theory. For the Device-A example, the well-known Arrhenius relationship will be
used to describe the relationship between life and temperature, as shown on the dialog box. One can also
specify additional levels of temperature at which to compute and plot estimates of life and associated
confidence intervals. Aswith other dialog boxes, various options for customizing the plots and for
requesting tabular output are available in the back pages of the dialog box.

Options on the “Stress Plot” page of the dialog box, shown in allows one to request and
customize a plot of the life versus stress along with the other analyses (hours to failure as a function of
temperature on log/Arrhenius scales for the Device-A example).
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ALT Multiple Probability Plot with Fitted Acceleration Model [ _ =]
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Figure 62 Dialog box showing the optionson the" stressplot" dialog page.

When all of the requested options have been selected, click on“Apply.” Thiswill produce the multiple
probability plot in showing the lognormal/Arrhenius model estimates of fraction failing as a

function of time at the diferent levels of temperaturein the original (including 10 Degrees C, where there
were no failures) and the Stressplot in
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Figure 63 Lognormal probability plot showing the lognormal/Arrhenius model fit to the Device-A
data with an extrapolation to the use conditions of 10 degrees C, including approximate pointwise
95% confidenceintervals.

able 10|gives a summary of the ML regression output, similar to what one would obtain from a standard
least squares regression output.

Table 10 Maximum likelihood estimation resultsfor the lognor mal/Arrhenius model fit to the Device-
A data

Devi ce- A ALT Results
Maxi mum | i kel i hood estimation results:
Response units: Hours
Lognormal Distribution

Rel ati onship
1 : Arrhenius

Log likelihood at maximum point: -321.7

Par anmet er Approx Conf. Interval
M.E Std. Err. 95% Lower 95% Upper
Intercept -13.4686 2.88719 -19.1274 -7.8098
Tenrp  0.6279 0.08284 0. 4655 0. 7902
sigma  0.9778 0.13265 0. 7495 1.2756
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Figure 64 Stress plot on Arrhenius paper showing the estimated failure-time densities as a function of
temperature.

Thereis nothing in either of these plots to indicate any serious departure form the fitted model. Of course it
should be emphasized that just because the data fits the model well within the range of the data does not
imply that one can safely extrapolate out side of the range of the data (10 degrees C for the Device-A
example). The justification for the extrapolation comes from the Arrhenius rate-reaction model from
physical chemistry. If this model does not adequately describe the effect of temperature on the underlying
degradation mechanism, then serioudly incorrect extrapolations could result.

7.5 Makelifedata objectsfor individual groups

In many applications, under certain circumstances, it will be desired to select one or more of the groups of
regression data set for more focused analysis. It is possible, for example to choose a particular level of
levels of an accelerating variable and do single-distribution analyses for them. Alternativiey, one may want
to delete one or more subsets for a data set either as a form of sensitivity analysis or because the data need
to be deleted because they are incorrect. We will illustrate this by making a sunset life data object for
Mylarpoly.ld life data object. As shown in Section 19.3.1 of Meeker and Escobar (1998), the specimens
tested at 361.4 kV/mm failed from a failure mode different than those at other levels of voltage stress
because voltage stress was too high. It is thus appropriate to drop these data from the analysis. Using
SLIDA & Simple regression (ALT) life data sp Make life data objects for individual
groups brings up the dialog box like that shown in
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Make life data object for individual groups [ _ =] |

B asic |
— Choose life data object—————— -~ Chooze explanatory variable(z)
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Level(z] or combination(z] of levels

— Choosze output life data object name ——
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Q. I Eann::ell .-'1'-.|:||:|I_I,I| I<| >| currernt Help |

Figure 65 Dialog box requesting the creation of a subset data object for the mylarploy data, omitting
the 361.4 kV data.

For the example, we choose the mylarpolyld comparison life data object. The voltage stress variable
kV.per.mmisthe only explanatory in this life data objects, so it is automatically highlighted. Then choose
the desired levels (all except 361.4 in this case) under the list of available levels (or in general combinations
of levels). A name for the output data object is chosen automatically when the level(s) or combinations of
levels are chosen, but it is possible to edit this name. In this example, because so many levels were chosen,
the automatic name is a bit long, so it was edited to read mylarpoly.subset.ld. After clicking on “OK” or
“Apply” the new life data object is created, we get the message “Saving subset data object
mylarpoly.subset.ld,” and this life data object will appear in subsequent lists of accelerated life test or
regression life data objects.

8. Multiple regression (ALT) life data analysis

The methods illustrated in Section |Z|are easily extended to allow one to fit failure time regression models
with two or more explanatory variables. The methods presented here provide useful extensions to the
multiple regression methods covered in a standard course in the subject of multiple regression analysis,
allowing for non-normal distributions and censoring. To illustrate the methods for failure-time regression,
we will use the tantalum capacitor life data (data object Tantalum.ld) from Singpurwalla, Castellino, and
Goldschen (1975). These data were also analyzed in Section 19.3.3 of Meeker and Escobar (1998). The
tabular summary of these datain Was obtained by using SLIDA
pMake/summary/view/edit data object gpSummary/view data object.

66



Table 11 Summary of the tantalum capacitor life data object

Sunmary of : Tant al um Capaci tor Data

Nurmber of rows in data matrix= 48

Response units: Hours

Response mini mum 20

Response maxi mum 37000

Nurmber of cases in data set= 2204

Nurmber of exact failures in data set= 40

Nurmber of right censored observations in data set= 2164
No truncation information

Sunmary of nuneric colums in X matrix:
mn nmax mean sd cv
Volts 35 62.5 51.98 9.897 0.1904
DegreesC 5 85.0 42.50 36.349 0.8553

Li st of unique X values (or comnbinations)
Vol ts DegreesC nin-tine max-tinme #exact #rcen

1 35.0 85 20 37000 4 996
2 40.6 85 20 27000 4 196
3 46.5 85 800 2800 2 48
4 51.5 85 500 10700 4 49
5 46.5 45 100 27300 6 496
6 46.5 5 1000 1000 1 174
7 62.5 5 25 12500 18 156
8 57.0 45 8900 8900 1 49

8.1 Censored data pairsplot

As described earlier, data analysis should begin with exploration using graphical tools. The dialog box in

obtained from SLIDA wp Multipleregression (ALT) life data mp Censored data pairs plot,

allows the user to plot al pairs of variablesin one “matrix plot” (also known asa*“pairs plot” in S-PLUS).

Cenzored Data Pairs Plot !EI

Life data object: Title optian: Ifull vI
ITantaIum.Id vI

|<| >l curremt Help |

Figure 66 Dialog to request a censored data pairsplot.

k. | Eancelli

shows a pairs plot for the tantalum capacitor data. As shown in the simple regression example
with the Device-A data, the censoring makes it more difficult to interpret a scatter plot. The Volts versus
Degrees C plot shows the complicated nature of the experimental design for this example.
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Figure 67 Censored data pairs plot show the tantalum capacitor life versus voltage and temperature.

8.2 Censored data scatter plot

The censored data scatter plot dialog box obtained with SLIDA sp Multipleregression (ALT) life data mp
Censored data scatter plot is exactly the same as that shown in Eiéure 55| obtained with SLIDA wmp
Simple regression (ALT) data analysis sp Censored data scatter plot. As before the dialog allows one
to request a single scatter plot of the response versus one explanatory variable, with an option to transform
either or both of the data axes.

8.3 Probability plot and ML fit for individual conditions

The dialog obtained from SLIDA sp Multipleregression (ALT) life data sp Probability plot and ML fit
for individual conditions, shown in allows one to request separate analyses for all combinations
of experimental variable levelsin one’' s data set, with all of the results plotted on one probability plot.
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ALT Multiple Individual Probability Plot [ _ =] |

Basic | Plat Optionz | kdadify Plat .ﬁ.:-:esl T abular Dutpuk I
— Required — &l data objectz
Life data object: [T Include in data objsct list?
Im — Some optiohs
Dption; % Choose dist FPercent confidence level;

B diztributions IEIE

MHumber of digits in tables:

Diistribution; ILDgnDrmaI - I |4—
Choose explanatom wariable(z) S ave results in Jast groupi

0K | cancel | apply | 1| ] cument Help |

Figure 68 Dialog box requesting a probability plot showing individual nonparametric estimates for
each experimental factor level combination on lognor mal paper.

After the dialog box appears, choose the life data object (only life data objects with explanatory variables
appear in the list), adistribution, and all or some of the explanatory variables. Then click “Apply” or “OK,”

producing a probability plot like that in
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Figure 69 Probability plot showing individual nonparametric estimates for each
experimental factor level combination on lognormal paper.

By using the Plot Options page of the dialog box in [Figure 68| it is possible to suppress the
printing of the legend or have it print on a separate page. There is a considerable amount of
variation among the slopes of the ML estimate linesin Thisis due to the small number
of failures at some combinations of voltage and temperature. Corresponding numerical results are
given in[Table 12 NAs are shown for test conditions for which there were not enough failures to
compute ML estimates.

Table 12 Individual ML estimatesfor the different tantalum capacitor lifetest conditions

Tant al um Capacitor Data
Maxi mum | i kel i hood estimation results:
Response units: Hours

Di stri bution

| abel , Log li kel i hood mi se_nu Sigma se_signma

135 Volts; 85 DegreesC -60.45 46.57 17.297 13.599  6.3819

2 40.6 Volts; 85 DegreesC -57.99 25.10 7.005 7.247 @ 3.2394
3 46.5 Volts; 85 DegreesC -24.10 10.73 1.892 1.591 9949

4 51.5 Volts; 85 DegreesC -50.28 14.67 2.759 3.772 1.6760
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5 46.5 Volts; 45 DegreesC -92.88 22.14 4.533 5.273 1.9315

6 46.5 Volts; 5 DegreesC NA NA NA NA NA
7 62.5 Volts; 5 DegreesC -217.19 15.47 1.513 4.809 0. 9950
8 57 Volts; 45 DegreesC NA NA NA NA NA

Total log likelihood= -502.9

8.4  Probability plot and ML fit for individual conditions: common shapes (slopes)

The methods described in this section are similar to those described in Sections and except that
more than one explanatory variable can be specified for the analysis. Using SLIDA s Multiple
regression (ALT) life data mp Prob plot and ML fit for indiv cond: common shapes (slopes) brings up
adialog box like that in This dialog box is very much like that obtained with SLIDA wp Simple
regression (ALT) life data analysisap Prob plot and ML fit for indiv cond: common shapes (slopes),
except that one is alowed to choose more than one explanatory variable (including categorical variables,
known as “factors’ in S-PLUS). Using maximum likelihood, a model isfit that allows the scale parameter
of log-location-scale distributions (location parameters of location-scale distributions) at the different
combinations of experimental conditionsto vary, but constrains the shape (dope) parameter of the log-
location distributions (scale parameters of |ocation-scale distributions) to be the same in the model.

Probability plot for individual levels with common shape/spread [H|El E3

Bazic | Plat Optiohz |h-1n:u:|if_I,I Flat .-’-\-.:-:esl T abular Outpuk I Stregz Plot |
— Required — &l data ohjects
Life data object: [ Includs in data object list?
ITantaIum.Id - I e ol
O ptiar; % Chooze dist Percent confidence level:

B distributions IEIE

MHurnber af digits in tables:

Diistributian: ILDgnDrmaI - I |4—
Elzese G almale ) s F Save results in; T antalurn, durnrmy.g

Yaltz !

ok | cancel| apply | 1| [ curent Help |

Figure 70 Dialog box to request, for the tantalum AL T data, a probability plot and maximum
likelihood estimation for individual combinations of voltage and temperatur e, but with a common
lognor mal shape parameter.

Aswith previous similar dialog boxes, choose the life data object, a distribution, the explanatory variables
to be used, and then click “Apply” or OK, giving the probability plot shown in
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Figure 71 Tantalum ALT data probability plot and maximum likelihood estimation for individual
combinations of voltage and temper ature, but with a common lognor mal shape parameter.

8.5 Probability plot and ML fit of aregression (acceleration) model

This section describes the fitting a multiple regression model. The dialog for doing this, while similar to the
dialog for fitting a one-variable relationship, differs significantly. First, the model specification is more
involved because more than one variabl e/rel ationship combination has to be specified. Relatedly, it isalso
more complicated to specify additional conditions (“new.data” in S-PLUS jargon) at which to do
evaluations of distribution properties like failure probabilities and quantiles. Additionally, there is no option
on the dialog for a“stress plot.” Instead, after amodel isfit, the user can make a*“conditional stress plot,”
as described in the next Section

Using SLIDA s Multipleregression (ALT) life data sp Probability plot and ML fit of a regression
(acceleration) model brings up adialog box like the onein In this box, one chooses the life data
object, adistribution (or the six-distribution option) and which explanatory variables to use. Then one
moves to the model page of the dialog to specify the modél (i.e., life-explanatory variable relationships). To
illustrate these features, we continue with the tantalium capacitor example.

After the Tantalum.ld life data object has been chosen, one should choose the distribution and explanatory
variables. The Plot Option and Tabular Output pages of the dialog box will show (when output options are
actually selected) lists of explanatory variable combinations from which one can choose one or more
combinations for particular focus. For example, as with simple regression analyses, one can ask for
confidence intervals for ML estimates of the cdf (fraction failing as a function of time) on probability plots
and for tables of distribution quantiles or failure probabilities at specified explanatory variable
combinations. It is also possible to input user-specified combinations of levels of the explanatory variables
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(“new data” in S-PLUS jargon) other than those implied by the levelsin the input data. Thisisillustrated in
the dialog box shown in Figure 72lwhere the combinations 30 Volts is combined with 70 and 80 degrees C
were specified. Note that each combination entered is separated by a comma, but that variables within a
combination are separated by semicolons. When entering these numbers it is sometimes convenient to use
the right-click Zoom option. The “Save resultsin:” box gets filled and becomes editable after athe life-
explanatory variable relationships are chosen on the Model page.

ALT Multiple Probability Plot for Multiple Regrezzion Relations... [lE]

Basic | b odel | Plat Options |MDdif_'.-' Pl .-’-'-.:-cesl T abular Dutput |
— Required — &l data objectz
Life data object: [T Include in data objsct list?
Im — Some optiohs
Dption; % Choose dist FPercent confidence level;

B diztributions IEIE

MHumber of digits in tables:

Diistribution; ILDgnDrmaI - I |4—
Choose explanatom wariable(z) C e resulte I—

— Specity new data for evaluation

Sep. elements with ; and raows with |

Additional levels far evaluation:

|3n;1 0,304

0K | cancel | apply | 1| ] cument Help |

Figure 72 Basic page of the multiple regression dialog box requesting a probability plot showing a
fitted lognor mal/inver se power /Arrheniusregression model to the tantalum capacitor data.

On the Model page of the dialog box (shown in[Figure 73), the user first chooses the relationships for each
of the variables (except that categorical variables--factorsin S-PLUS jargon---are automatically chosen to
be class variables). This choosing process isinitiated by clicking on the “relationships’ button. For the
example below, the standard log (equivalent to inverse power rule) and Arrhenius relationships were chosen
for the voltage and temperature variables, respectively.

Aswith previous dialogs for requesting ML estimation, a Tabular Output page allows the user to request
tables of distribution quantiles or failure probabilities for specified levels or combinations of levels of the
explanatory variables.

73



ALT Multiple Probability Plot for Multiple Regrezzion Relations... &
Basic ; b odel 1 Plot Options | kModify Plot .-’-'-.:-cesi T abwalar Clutput ;
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[ Include interaction termfz]?

ok | cancel | apply | 1| ] cument Help 1

Figure 73 M odel-specification page of the multiple regression dialog box requesting a probability plot
showing a fitted Weibull/inver se power/Arrheniusregression model to the tantalum capacitor data.

The Tabular Output page of the dialog box in shown in lists the available levels of the
explanatory variables (thislist isfull only if the explanatory variables have been chosen on the basic page

and if one or the other of the tabular output optionsis checked). The user-inputted values appear at the
bottom of the list. In this case, only the two user-inputted values have been chosen for generating the output
tables.
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Figure 74 Tabular Output page of the multiple regression dialog box requesting a probability plot
showing a fitted Weibull/inver se power/Arrheniusregression model to the tantalum capacitor data.

Clicking on “OK” or “Apply” produces the probability plot in and the S-PLUS tabular output for
this example shown in Table 13| [Table 13]gives the usual regression output as well as the tabular output for
30 Voltsand 5 Degrees C.

Table 13 ML estimatesfor thelognormal distribution acceleration model fit to the tantalum
capacitor lifetest data

Maxi mum | i kel i hood estimation results:
Response units: Hours
Lognormal Distribution

Rel ati onshi p
1 Volts: Log
2 DegreesC. Arrhenius

Log likelihood at maxi mum point: -541.3

Par arret er Approx Conf. Interval
MLE Std.Err. 95% Lower 95% Upper
Intercept 87.5605 13.5007 61.100 114.0215
Volts -19.8815 4.5457 -28.791 -10.9721
DegreesC 0.3003 0.2103 -0.112 0.7125
sigma  6.0175 0.8410 4.576 7.9137
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Lognornmal Distribution Failure Probability Estinates
From Tant al um Capacitor Data at 30Volts; 5DegreesC
wi th Lognornal M.E and Poi ntwi se Approxi mate 95% Confi dence Intervals

Hour s Fhat Std.Err. 95% Lower 95% Upper

5000 0.00003444 0.00006823 7.092e-007 0.001670
10000 0. 00005556 0.00010688 1.280e-006 0.002406
20000 0.00008851 0.00016542 2.270e-006 0.003440
50000 0.00016067 0.00028926 4.713e-006 0.005449

Quantile Estinmates
From Tant al um Capacitor Data at 30Volts; 5DegreesC
Lognormal M.E and Poi ntwi se Approxi mate 95% Confi dence Intervals

p Quanhat Std. Err. 95% Lower 95% Upper
0.001 1058114 3. 021e+006 3930 2.849e+008
0.005 23380061 6.909e+007 71378 7.658e+009
0.010 104912433 3.173e+008 279421 3.939e+010
0. 050 6335885059 2. 076e+010 10302254 3.897e+012

Figure 75| shows the probability plot for this example with lines also drawn for the user-specified
combinations of 30 Voltsand 5 Degrees C and 30 Volts and 10 Degrees C. The legend is covering some of
the plotted information, so one might want to exercise the Plot Option to suppress or move the legend to a
new page. Note that when the model isfit, the results are saved in a“results object” named
Tantalum.groupm.Lognormal .VItsLog.DgrCArrh. Note that the name of the results object contains the life
data object prefix, distribution name, and explanatory variable/relationship combinations, relieving the user
from the chore of specifying such names and making it easier to distinguish among different results objects
when requesting subsequent analyses (e.g., residual plots, conditional stress plots, and sensitivity analyses).
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Tantalum Capacitor Data
with Lognormal Log Arhenius Model MLE
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Figure 75 Probability plot showing a fitted lognor mal/inver se power/Arrhenius regression model to
the tantalum capacitor data.

able 14|shows ML estimates of lognormal distribution failure probabilities for tantalum capacitors at
30Volts and 10DegreesC. Note that the confidence intervals for failure probabilities are very wide.

Table 14 ML estimates of lognormal distribution failure probabilities for tantalum capacitors at
30Volts; 10DegreesC

Lognormal Distribution Failure Probability Estimates
From Tantalum Capacitor Dataat 30V olts;10DegreesC
with Lognormal MLE and Pointwise Approximate 95% Confidence Intervals

Hour s Fhat Std.Err. 95% Lower 95% Upper
20 5.842e-007 1.414e-006 5.090e-009 0.00006704

50 1.247e-006 2.884e-006 1.340e-008 0.00011604
100 2.180e-006 4.875e-006 2.721e-008 0.00017458
200 3.762e-006 8.140e-006 5.420e-008 0.00026114
500 7.592e-006 1.573e-005 1.308e-007 0.00044060
1000 1.272e-005 2.554e-005 2.490e-007 0.00064978
2000 2. 105e-005 4. 095e-005 4. 651e-007 0.00095205
5000 4.018e-005 7.505e-005 1.032e-006 0.00156114
10000 6. 455e-005 1.170e-004 1.847e-006 0.00225073
20000 1.024e-004 1.803e-004 3.247e-006 0.00322065
50000 1.849e-004 3.136e-004 6.662e-006 0.00510952

8.6 Conditional stressplot
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When a fitted regeression model has more than one explanatory variable, it is still possible to make a“ stress
plot” showing time as a function of stress (or other explanatory variable). In order to do this, however, it is
necessary to specify fixed values of the other explanatory variables. Using SLIDA sp Multipleregression
(ALT) life data wp Conditional stress plot brings up the dialog box in[Figure 76] When the dialog box
appears, it will remember the most recent results object (if the analysis was done in the current session). In
this case the remembered name is Tantalum.groupm.Lognormal .V ItsLog.DgrCArrh. Suppose now that
design engineers want to estimate the life distribution of the capacitors when operating at 35 Degrees C for
different levels of voltage. After specifying thisinformation and clicking on “Apply” or “OK,” produces a

plot like that in [Figure 77]

Conditional Stress Plot M= |

Stregs Plot | Plat Options |h"|I:II:|if_'.-' F'I-:ut.ﬂ-.:-:esl

— Shresz plot ophions
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I"-.-"l:ults vI

Fised wanables IDegreesE

Push to gtart chooging fiked walues

Chooze |

Levels of fiked vanables:

|35

ok | cancel | apply | k[ curent Help |

Figure 76 Dialog box for a conditional stress plot.
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Fixed values of DegreesC=35
for the Tantalum Capacitor Data

107191
10M 71
107151
10731

n 3

s 10°11:

T 107091
107071
10’\051: 20%

E 10%
107031
107017 Tl

30 35 40 45 50 55 60 65

Volts on Inverse power rule scafé " 1243 19%

Figure 77 Conditional stress plot showing estimated tantalum capacitor life versus voltage for
temperaturefixed at 35 degrees C.

8.7 Sensitivity analysis plot

Generally when fitting several aternative models to data, among the models that fit the data well, thereis
usually relatively little difference in the results from the fitted model, as long as one is working within the
range of one’sdata. SLIDA has a powerful tool that allows one to compare directly aternative analyses
with different underlying model assumptions. Using SLIDA sp Multipleregression (ALT) life data
analysis p Sensitivity analysis plot brings up the dialog box in Similar to the Conditional
stress plot dialog, the last results structure used in the current session is remembered, but any of the other
existing results structures could be selected instead. The primary model purturbation used in the sensitivity
analysisis the relationship assumption relating a continuous explanatory variable to life. Thisis done by
fitting separate models using several different choices for the parameter in the Box-Cox family of
transformations (the default valuesare—1, -5, 0, .5, 1, 1.5, and 2) on the chosen numerical explanatory
variable. The output is a plot of the ML estimate of a selected quantile (or quantiles) as a function of the
Box-Cox parameter (1 isthe same as alinear transformation, .5 is the same as a square root relationship, 0
corresponds to alog relationship, and —1 corresponds to a reciprocal relationship).
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Figure 78 Dialog box requesting sensitivity analysis for the assumed relationship between tantalum
capacitor life and voltage at 30 voltsand 35 degrees C.

If only one quantile and one distribution are used in the comparison (the default), pointwise confidence
intervals for the quantile are also plotted, as shown in[Figure 79
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Figure 79 Sensitivity analysis plot showing the effect on tantalum capacitor life of the assumed
relationship between life and voltage at 30 voltsand 35 degreesC.

Also provided isaplot, like that shown in of the profile likelihood function for the Box-Cox
parameter. This plot allows an assessment of the statistical power to discriminate among the different
relationship parameters. Note that if there are only two levels of the transformed explanatory variable, the
profile likelihood will be constant because there is no information in the data to discriminate among
different transformations.
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Profile Likelihood and 95% Confidence Interval
for Box-Cox Transformation Power from the Lognormal Distribution
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Figure 80 Profile plot showing the relative likelihood (probability) of the tantalum capacitor data as
afunction of the voltage relationship Box-Cox par ameter.

In this case, the profile likelihood suggests that a transformation with the Box-Cox parameter lessthan —.5
is not consistent with the data. Values ranging from —.5to larger than 2.0 do, however, seem to be
consistent with the data. Based on previous, transformations used typically used for similar products have
been 0 (corresponding to a log transformation). To be conservative, however, values between 1 and
1.5might be used in reporting a plausible range of results.

8.8 Makelifedata objectsfor individual groups

It may, under certain circunstances be desired to select one or more of the groups of regression
datafor more focused analysis. It is possible, for example to choose a particular combination of
levels of explanatory variables and do separate analyses for them. We will illustrate this by
making a separate life data object for the new design within the NewSpring life data object.
Using SLIDA s Simpleregression (ALT) life data wp Make life data objects for individual
groups brings up the dialog box in
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Make life data object for individual groups [ _ ] |
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Figure 81 Dialog box requesting the creation of a single distribution life data object for the New
Design data in the NewSpring data.

After clicking on “OK” or “Apply” the new life data object is created, we get the message “ Saving subset
data object NewSpring.NewMethod.ld,” and this life data object will appear in subsequent lists of single
distribution life data object.

9. Regression Residual Plots

In any kind of statistical modeling, it is important to look for departures from models being fitted to data.
This is especialy true for regression models in which explanatory variables like temperature and humidity
are used to describe the characteristics of a response variable like life time. Because it is possible to specify
most model assumptions in terms of characteristics of model residuals (deviations between the response and
some definition of expected or typical response), a useful method of diagnostic checking is to examine a
model’s residuals, usually with various graphical displays. Examples illustrating the use of and some
technical details concerning the definition of residuals for censored data are given in Section 17.6 of
Meeker and Escobar (1998).

9.1 Resdualsversusfitted values

It is common practice to plot residuals versus fitted values. Such a plot is useful for detecting departures
from the structural model as well as model departures like nonconstant spread. Using SLIDA wp
Regression residual analysis sp Residuals versus fitted values brings up a simple dialog box,

shown in[Figure 82]

83



Regression residuals verzus fitted values [ _ 1] I
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Figure 82 Dialog box requesting a plot of the regression residuals for the laminate panel data versus
fitted values.

k. | Eancell

All one needs to do it to choose aresults object (alist of al such objectsin the user’s data base is provided)
and click on “Apply” or “OK” to request a plot of regression residuals versus fitted values like that shown

in[Figure 83)for the laminate panel data.

Laminate Panel Fatigue Data
with Lognormal MPa:Log
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Figure 83 Plot of theregression residualsfor the laminate panel data ver susfitted values.

9.2 Residualsversuspossible explanatory variables

Theresidual from aregression model should not have a strong relationship with any other external variable.
If such arelationship is discovered, it suggests that the variable should have been included into the model.
To illustrate this we return to the tantalum data used in Section but using amode! in which lifeis
related to voltage only, omitting the temperature variable (thiswill be referred to as the reduced model).
Using SLIDA sy Regression residual analysis sp Residuals versus possible explanatory

variables brings up the dialog box shown in
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Figure 84 Dialog box requesting a plot of residualsversusan explanatory variable.

The results object for the reduced model is chosen (actually it is remembered as the default choice if the
model was fit just before bringing up the dialog). Then DegreesC is chosen as the variable against which to
plot. Clicking on“Apply” or “OK” givesthe plot shown in

Tantalum Capacitor Data Kesiduals versus DegreesC
with Lognormal Volts:Inverse power rule
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Figure 85 Residuals for the Lognormal/inver se power relationship mode for the tantalum capacitor
data plotted against the omitted variable DegreesC .

For the full model fitted in Section the estimated Arrhenius coefficient (activation energy in eV) was .3,
avaluethat is physically much larger than would be expected. This estimate, however, was not statistically
different from zero. Nevertheless, physically we expect temperature to have an effect and would be inclined
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to keep temperature in the model. The residual plot in showing decreasing life for increasing
temperature, reinforces this conclusion.

9.3 Residualsversusaobservation number

In some studies, data are obtained over time and the order of the cases in the resulting data set may have
some importance. For example, if units are tested sequentially, one at a time, on a machine to do fatigue
cycling, it is possible that some underlying “lurking factor” has an effect on the response. For example,
there may be gradual drift of machine settings or an effect due to changes in ambient temperature or other
environmental conditions. An analyst can check for such underlying time-dependent changes in a process
by plotting residuals versus time order of the observations. Of course, in order for such a plot to be
meaningful, it is necessary that the case ordering in the data set correspond to the actual time ordering that
units were tested. If (as is often the case) available data are ordered according to observed failure time
(which might be the natural ordering for commonly-used simultaneous testing) or according to explanatory
variable levels, the potentially important time-sequence information is lost and plots made versus time order
would probably have no meaning.

A plot of residuals versus observation number is easily obtained by using SLIDA s Regression
residual analysis sp Residuals versus observation number and choosing the desired regression
results object from the list presented in the dialog.

9.4 Residual probability plot

As described in Section 17.6 of Meeker and Escobar (1998), residuals from a regression model, even with
censoring, can be examined with the use of standard probability plotting methods. Residual probability plots
are useful for assessing the reasonableness of particular distribution choice for a regression model. The
multiple probability plots used in Sections |Z|and E|are useful for making this assessment at individual
conditions. After fitting an overall model, however, plotting the residuals provides more information on the
adequacy of the overall distribution.

SLIDA & Regression residual analysis sp Residual probability plot brings up a dialog box
like that shown in to request a residual probability plot of the residuals from a previously
estimated model. Choose the desired regression results structure an click on “OK” or “Apply.”

Resziduals probability plot _ [} I

— Required inputs

| Use results i ILaminateF‘aneI. vI

ok | cancel| apphy | i curent Help |

Figure 86 Dialog requesting a probability plot of the regression residuals for the laminate panel data.

is aresidual probability plot for the laminate panel data.
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Laminate Panel Fatigue Data Residual Probability Plot
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Figure 87 Probability plot of theregression residualsfor the laminate panel data.

10. Planning an Acccelerated Life Test (ALT)

Accelerated life tests are complicated, expensive experiments. Careful planning of such experimentsis
important. SLIDA provides tools for the evaluation and comparison of proposed accelerated life test plans.
To use these tools, on must specify model information (or planning information) and the proposed test

plan(s).

10.1 Specification of ALT plan values
Using SLIDA & Plan an accelerated life test @p Specify ALT model information (planning
values) brings up adialog box like the one shown in
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Figure 88 Beginning dialog box for specifying AL T-planning values.

As an example, we will specify the planning values corresponding to the adhesive bond used in Example
20.1 on page 535 of Meeker and Escobar (1998). On the first page of the dialog box, change “last.altpv” to
the more descriptive AdhesiveBond.pv, choose a distribution (Weibull in this case), a relationship
(Arrhenius) and edit the time units cell to the more descriptive “Hours,” as shown in Note that
the distribution name was automatically inserted into the “ Save results in” cell and the stress units cell was
changed to Degrees C (the object name is too large to see completely without using the right-click-Zoom
option in the cell).
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Figure 89 Completed Basic page of the Get accelerated life test plan values dialog box.

After the Basic page of the dialog box has been completed, move to the Parameters page. There are two
different options for specifying the ALT planning information corresponding to a quantile line or lines on
the linearized life-stress relationship. One can specify two points or a point and a slope. For the adhesive
bond example, the responsible engineers in the past had used a Weibull distribution to model the life of
adhesives and the Weibull shape parameter was typically in the neighborhood of 1.667. In addition, for
purposes of planning, the .001 quantile of the life distribution at 50 degrees C is specified as 183 days (or
equivalently, the failure probability at 50 degrees and 183 days is specified to be .001). Additionally, the
dlope parameter in the life-temperature relationship is the effective activation energy (.7265 in eV). The

completed dialog box is shown in Click on “OK” or “Apply” to create the ALT planning value
object.
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Figure 90 Completed Parameter page of the Get accelerated lifetest planning values dialog box.

10.2 Specification of an ALT test plan

In order to specify an ALT plan, use SLIDA s Plan an accelerated life test p Specify ALT test
plan to bring up a dialog box like that shown in Specify the number of accelerating variable
levels, type of censoring, and the accelerating variable level at use conditions. Y ou may also want to specify
aparticular root for the test plan object name (AdhesiveBond1 in the example). The suggested default suffix
altpv is provided automatically. Then provide the actual plan information. Note that it is allowable to use an
allocation of O for alevel if desired.

Specify accelerated life test plan [ _ =] |

Test Plan [nput |

— Bazic inputz — Mumberz zeparated by commas

Save results i I-ﬁ-dhEiSiVEB ohdl.al | | Accelerating variable levels:
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|3 &llocations: |1 55.60.84
Tupe of cenzaring I Time [Typel] |* I Cenzor Times: |1 83183123
[Hiumtren af Eailbnes: I

ok | cancel| apply | 1| [ curent Help |

Figure 91 Completed dialog box specifyingan AL T plan.

After the plan is specified, click on “OK” or “Apply” (in case that you want to make more than one related
plan. To specify a second or third plan, edit the plan and the root of the plan object name (e.g., use
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AhhesiveBond2 so that the previously specified plan(s) will not be overwritten) and again press “OK” or
“Apply” i

10.3 Summarization and approximate evaluation of a specified AL T test plan

Using SLIDA s Plan an accelerated life test wp Plot, summarize, and evaluate ALT test plan
will bring up the dialog box shown in In this box, one specifies the ALT plan values object
(AdhesiveBond.Weibull.altpv in this case), the ALT test plan object (AdhesiveBondl.atplan) to be
evaluated, and the use conditions (50 Degrees C for the adhesive bond). By default, the output produced
includes a tabular summary and a plot summary of the specified ALT test plan. shows an
Arrhenius plot for the adhesive bond test plan specified in using the planning values that were
specified in[Figure 90|

Plot. zummarize/evaluate ALT plan [ _ =] |

[Mputs |
—ALT model/plan inpute————— — Plot/summary evaluation output optionz
BLT plan values object ¥ Table Summary?

I.ﬁ.dhesiveEnnd. vI ¥ | Plot Summary?

ALT test plan object Sewa pesulle it ||agt_|:|ut
I.ﬁ.dhesiveBnnd vI

—ALT evaluation options

Ilze conditions? IEEI

Specify quantiles for plottingdevaluation

[1.5.9
ok | cancel| apply | 1| [ curent Help |

Figure 92 Dialog box asking for a summary evaluation and plot of a proposed accelerated life test
plan for the adhesive bond example.

Tabular output provides a printed summary of the planning values and the test plan, followed by alisting of
the large-sample approximate standard deviation and confidence interval precision factor for confidence
intervals corresponding to each of the quantileslisted in the “Plot, summarize/evaluate ALT Plan” dialog
box shownin

Table 15 ALT planning infor mation and test plan specification for the adhesive bond example.

Accel erated test planning val ues
Di stribution: Weibull

Rel ati onshi p:  Arrheni us

Time units: Days

For a censoring tinme of 183 Days
the failure probability at 50 Degrees C is: 0.001

Intercept is: -16.7
slope = 0.726

wei bul |l . beta = 1.67
sigma = 0.6

Accel erated Test Pl an
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| evel number censor.tine pi prfail Efail
78 155 183 0. 4478 0.518 0.0315772 4.89

2 98 60 183 0.7264 0.201 0.242189 14.5
3 120 84 183 1 0.281 0.900543 75.6

Use condition is 50 Degrees C
Total nunber of test units= 299

The | arge sanpl e approxi mate standard devi ation
of the 0.1 log quantile at 50 Degrees C = 0.4378
corresponding to a 95% confi dence precision factor or R= 2. 358

The | arge sanpl e approxi mate standard devi ation
of the 0.5 log quantile at 50 Degrees C = 0.4911
corresponding to a 95% confi dence precision factor or R= 2.619

The | arge sanpl e approxi mate standard devi ation
of the 0.9 log quantile at 50 Degrees C = 0.532
corresponding to a 95% confi dence precision factor or R= 2.837

Levels = 78,98,120 Degrees C, n=155,60,84
Censor time=183,183,183, parameters=-16.74,0.7265,0.5999
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Figure 93 Arrhenius plot showing a proposed test plan for the Adhesive Bond example.

10.4 Simulation of an ALT test plan

Although the approximate evaluation given above is useful, doing a smulation of a proposed ALT test plan
avoids the use of large-sample approximations (which will not be adequate when some of the test conditions
have expected numbers of failures that are small) and will provide insight into the limitations of a proposed
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test plan. Using SLIDA s Plan an accelerated life test @p Simulate an ALT test plan brings
up the dialog box in allowing the user to request a simulation of a proposed ALT test plan.

Simulate an ALT test plan [_ ] |

[Fiputs |
—&LT model/plan inpute———— — Output optionz
ALT plan walues object MHumber af Simulations:
I.ﬁ.dhesiveBnnd. vI |1 na
ALT test plan object MHurnber of lines to plat;

I.ﬁ.dhesiveﬂ ond |- I IEEI

—&LT evaluation optiohs————— | Save results in Ilast.-:uut
Usze conditions? |5E|

Specify quantiles for plotting/ewaluation

[1.5.3
0K | cancel | apply | 1| ] cument Help |

Figure 94 Dialog box requesting a simulation to evaluate a proposed accelerated life test plan for the
adhesive bond example.

Then specify the previously created ALT plan values (e.g., AdhesiveBond.Weibull.altpv), the ALT test plan
object (e.g., AdhesiveBond1.Weibull.altplan), the Use conditions, and possibly change other optional
inputs, and click on “OK” or “Apply.” The simulation will then begin to run, giving an indication of
progress in the output window (completing the simulation will take from a few seconds to afew minutes
depending on the number of simulations requested (100 is sufficient for most purposes). When completed, a
summary of the results is depicted in amodel plot (an Arrhenius plot for the example), as shown in
95.
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Figure 95 Arrhenius plot showing a summary of the simulation of the proposed accelerated life test
for the Adhesive Bond.

Accelerated life tests are complicated, expensive experiments. Careful planning of such experimentsis
important. SLIDA provides tools for the evaluation and comparison of proposed accelerated life test plans.
To use these tools, on must specify model information (or planning information) and the proposed test

plan(s).

11. Recurrence (point process) data analysis

Recurrence data (also known as point process data) arise when events are tracked on a collection (or
sample) of units over time. Such data arise in many different applications. For example, in field tracking, a
group of units is monitored over time and arecord is kept of repairs for individual units, perhaps consisting
of data, type of repair, and the cost of the repair. Interest, for example, may center on the recurrence rate or
on the average cumulative cost of system maintenance as a function of time.

11.1 Creating arecurrence data object

As with life data, to do a SLIDA analysis of degradation data, one first has to construct a recurrence data
object. Because the structure of recurrence data is different from that of life data, there is a different dialog
box to making a recurrence data object. SLIDA wp Make/edit/summary/view data object mp
Make a recurrence (point process) data object to bring up the dialog box in

94



Make a recurrence data object [ _ ] |
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I1ze right-button z2oom for easy editing

B
ok | cancel| apply | 1| [ curent Help |

Figure 96 Dialog box used to make a recurrence data object.

Clicking on the Choose data frame arrow in the dialog box illustrated in WiII show all of the
data framesin the SLIDA database and in the user’ s working database. Only some of these will be
appropriate for making a repeated measures data object. SLIDA has no way to distinguish among different
generic data frames (as it attempts to do with data objects when it decides which to put into alist available
for use) , so all data frames appear in the list. When the needed inputs have been specified, click on “OK”
or “Apply” to create the data object. In addition to creating the recurrence data object, a short summary of
the datain the object is provided (as show in and, if desired, a printout of the data can be
requested by using the Output Options page of the dialog box.

After choosing a data frame corresponding to a recurrence data set, one must choose the time, unit
identifier, and the status/event columns from the frame (all are required for recurrence data). The dialog in
uses the earth-moving machine maintenance data (MachineH is the frame name) from Chapter 16
of Meeker and Escobar (1998). For the earth-moving machine data there is also a cost variable giving the
cost of each reported maintenance action. Because cost was of primary interest in this application, this
variableis also specified in the dialog box. When the needed inputs have been specified, click on “OK” or
“Apply” to create the data object. In addition to creating the recurrence data object, a short summary of the
datain the object is provided (as shown in and, if desired a printout of the data can be requested
by using the Output Options page of the dialog box.

Table 16 Summary of: Earth-Moving M achine M aintenance Data

Nurmber of rows in data matrix= 573

Nunber of units in the recurrence data object: 23

Nurmber of event tinmes = 550

Total cost/weight of events in the recurrence data set= 1958.7
Response units: Hours

Response mni num 52

Response maxi num  9249.5
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11.2 Recurrencedata event plot
As with the analysis of other types of data, one should start with simple graphical methods that provide

insight into the nature of the data Using SLIDA sp Recurrence data analysissp Recurrence

event plot will produce the dialog box in In this dialog box one specifies the name of a
recurrence data. There are options to print the events for a subset of the data. This option is useful when

there are alarge number of unitsin a data set.

Recurrence data event plot [_ [ |

B azic |
— Required iz labelz
Recurrence data object [T Change axis labels?

IMachmeH_rd 3 v avie [t I.-‘-‘-.ut:::mati::
o e et I.-'l‘-.utumatin:

— Optional inputs

Haow to choosze which of 23 to plot?
All -

[« =} current Help |

Figure 97 Dialog box requesting an event plot for the earth-moving machine (Machine H)
maintenance data.

Then, clicking “Apply” of “OK” produces the event plot in allowing one to visualize the events
(maintenance actions in this example) as they unfolded in time (measured in hours of operation for this

example).
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Earth Moving Machine Maintenance Data
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Figure 98 Event plot for the earth-moving machine (Machine H) maintenance data.

11.3 Recurrence data mean cumulative function

Using SLIDA & Recurrence data analysissp Mean cumulative function plot will generate a
dialog box from like that shown in from which one can request a plot of the mean cumulative
function (MCF) and corresponding pointwise confidence intervals for a recurrence data set. There is an
option to request a table giving the same information. shows the MCF for the earth-moving
machine data. As described in Example 16.6 of Meeker and Escobar (1998), some of the irregular behavior
in this function in the early part of life can be traced to the regularly scheduled maintenance of the machines
in the fleet.
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Recurrence data mcf plot

Figure 99 Dialog box requesting a mean cumulative function (MCF) plot for the earth-moving
machine (M achine H) maintenance data.
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Figure 100 Mean cumulative function (MCF) plot for the earth-moving machine (Machine H)
maintenance data.

11.4 Comparetwo mean cumulative functions

In some applications, there is a need to compare recurrence data from two fleets, manufacturers, methods,
etc. The dialog obtained from SLIDA s Recurrence data analysis @p Compare two mean
cumulative functions plot, shown in allows one to request a plot making such a
comparison. As an example, we use data from Doganaksoy and Nelson (1991) on the lifetime of breaking
grids used in locomotives. This example was also used in Section 16.3 of Meeker and Escobar (1998). The
plot in shows an estimate of the difference between the MCF functions for two different
production batches of breaking grids along with corresponding pointwise confidence intervals. Because the
zero line fals outside of the pointwise confidence interval, the plot suggests that there is a statistically
important difference between the two batches.
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Figure 101 Dialog box requesting a plot comparing two mean cumulative function (M CF) plots.
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Figure 102 Plot comparing two mean cumulative function (M CF) plots.

11.5 Convert renewal recurrence datato life data (not yet available)
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Using SLIDA s Recurrence data analysissp Convert renewal recurrence data to life
data will alow the user to convert certain kinds of recurrence data into life data. The underlying
assumption that is needed for the output of the conversion to provide data that will not be misleading is that
the randomness in times between events (perhaps conditioned on some explanatory variables) in the
recurrence data process can be modeled adequately as a sequence of identically distributed independent
observations.

12. Degradation (Repeated Measures) Data Analysis

SLIDA provides convenient tools for doing the “simple degradation analysis’ described in Chapters 13 and
21 of Meeker and Escobar (1998) and elsewhere (as indicated in their end-of-chapter bibliographic notes).
In this smple method for degradation analysis, separate regression analyses are run on each individual
degradation path to predict failure times (which we call pseudo failure times) for those units that have not
failed. The idea is to sgueeze a little more information out of one's data. This approach to degradation
analysis (indeed any method of degradation analysis that will require any extrapolation) needs to have a
solid basis for the underlying degradation path model. Ideally, this will be a model based on well-developed
physical-chemical theory (e.g., some simple wear processes are known to be approximately linear after a
break-in period). When such a physical model is not available, extrapolation may not be justified.

We do not recommend the use of model fitting and experimentation with different variable transformation
in order to find, in a simple way, the relationship of “best fit” when there will ultimately be more than just a
little extrapolation in time. In any case, when extrapolation is required, analyses should be accompanied by
careful, systematic sensitivity analysis among a collection of models that are plausible. This sensitivity
analysis is critical to obtaining an understanding of the magnitude of model uncertainty (which when
extrapolating can dominate the statistical uncertainty quantified in our confidence intervals).

12.1 Make adegradation (repeated measures) data object

As with life data and recurrence data, one first has to construct a degradation data object. Because the
structure of different data is different from that of life data, there is a different dialog box to making a
recurrence data object. Using SLIDA s Make/summary/view data object sp Make a
degradation (repeated measures) data object will bring up a dialog box like that shown in
Clicking on the Choose data frame arrow will show all of the data frames in the SLIDA
database and in your working database. After choosing an appropriate repeated measures data frame, one
must choose the response, time, and unit identifier (all are required for degradation data), and explanatory
variables, if any. There are a number of other optional inputs or opportunities to change defaults. The
example in uses the GaAs Laser (GaAsLaser is the data frame name) degradation data from
Chapter 13 of Meeker and Escobar (1998). When the needed inputs have been specified, click on “OK” or
“Apply” to create the data object. In addition to creating the degradation data object, a short summary of the
data in the object is provided and, if desired a printout of the data can be requested by using the “ Output
Options’ back page of the dialog box.
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Figure 103 Dialog box used to make a repeated measures (degradation) data object.

12.2 Degradation data plot

Using SLIDA s Degradation data analysissp Degradation data plot brings up a dialog box,
like that shown in which can be used to request a plot of degradation paths. If there are
explanatory variables, there is an option to group paths by explanatory variable levels, instead of plotting all
paths on a single graph. It is possible to request special axes transforms (e.g., linear, log, or square root
axes) to plot either time or the response. The Modify Plot Options page allows one to control the ranges of
the plot axes.
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Figure 104 Dialog box to request a plot of degradation data for the GaAs L aser data.
shows a simple degradation plot for the GaAs laser data.
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Figure 105 Plot of degradation data for the GaAsLaser data.

12.3 Degradation datatrellisplot

Using SLIDA & Degradation data analysissp Degradation data trellis plot brings up a
dialog box like that shown in This dialog box is used to request a trellis plot of degradation
paths. If there are explanatory variables, there is an option to group paths by explanatory variable levels,
athough the individual plots, as illustrated in are recommended because they can be
importantly revealing.
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Figure 106 Dialog box to request a trellis plot of the GaAslaser degradation paths.
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Figure 107 Trellisplot of the GaAslaser degradation paths.

105



12.4 Accelerated degradation cell-aver age plot

Many degradation experiments are run at accelerated conditions (e.g., high temperature) in order to
accelerate the degradation process. A useful plot for such data is a cell-average plot giving the average
degradation as a function of time for the different level(s) of an explanatory variable. Averages are
computed across all units at combinations of the chosen explanatory variables The following example uses
the resistor data (three levels of temperature) to make such a plot. The plot gives a good visua indication of
the effect of temperature on degradation rate. Using SLIDA s Degradation data analysismp

Accelerated degradation cell-average plot brings up the dialog box in

Plot degradation [repeated measurez] data averages [ _ =] I
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Figure 108 Dialog box requesting a plot of the average reading of all units at the different

temperaturesfor the carbon-film resistor degradation data.

shows the resulting cell-average plot for the resistor degradation data.
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Carbon-Film Resistors Degradation Data Cell Averages
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Figure 109 Plot of the average reading of all units at the different temperatures for the carbon-film
resistor degradation data.

12.5 Convert/extrapolate datato failure-time data

The so-caled “simple degradation analysis’ method mentioned at the beginning of this section fits a
specified model to each of the sample paths in an effort to “sgueeze” a little more information out of such
data by exptrapolating the paths (or some of the paths) to predict the time of failure. Then the “pseudo
failure times’ are analyzed using the standard methods for failure-time data. The conversion of degradation
path data to failure-time data can be done easily with the SLIDA sp Degradation data analysis sp
Convert/extrapolate data to failure-time data dialog. It is necessary to specify the repeated
measures (degradation) data object and the degradation level defining failure. For the GaAs lasers, failure
was defined as the time at which 10 mA of current was needed to provide a specified (constant) amount of
light output. It is also possible to specify a maximum time (a pseudo censoring time), beyond which no
faillures are extrapolated. For the GaAs lasers, focus was on the lower quantiles of the failure-time
distribution and thus the paths were extrapolated only to 5000 hours, where 6 out of 15 lasers had failed
(i.e., had predicted current greater than 10 mA). Asin the dialog box for plotting degradation paths, on has
a choice of axis scales (e.g., linear, square root, or log). These same transformations are also used to
determine the scale in which to fit the linear regression lines used to extrapolate the degradation paths to the
compute the pseudo failure times. The effect of this choice can be quite pronounced (especially in the
dangerous and discouraged practice where one is extrapolating far in time) and in the absence of strong
physical motivation for one or the other, sensitivity analysisis strongly recommended.
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Figure 110 Dialog box requesting that the GaAs laser degradation date be mapped into pseudo
failure time data using 10 mA asthe definition of failure and a censoring time of 5000 hours.

After clicking on “OK” or “Apply,” Slida procudes the plot in showi ng the degradation paths
and extrapolationsto the fiailure level of censoring time (which ever comes first) and the life data object
GaAsL aserF10C5000.XLinear.Y Linear.ld is available for doing failure-time analysis. Note that the default
name (which could have been edited) reflects the failure definition level, pseudo censoring time, and the
transformation/axes used in generating the pseudo faulure times. Such descriptive names are useful because
analysts will often want to experiment with different choices for some or all of these and the automatic
coding makes it easy to do such experiments and to compare the results of different analyses using all of the
previously described tools for such data.
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Figure 111 Plot showing the GaAslaser degradation data being mapped into pseudo failuretime data
using 10 per cent asthe definition of failure and a censoring time of 5000 hours.

is an event plot showing the six pseudo failure times and the nine observations censored at 5000
hoursin GaAsLaserF10C5000.XLinear.YLinear.ld. In this example, the amount of extrapolation is
small (especially because no extrapolation was done beyond 5000 hours) and the degradation paths are well
behaved. Thus, the pseudo failure times should provide reasonably good predictions for the actua failure
times.
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Figure 112 Event plot showing the predicted failure times for the GaAs laser degradation
experiment.

12.6 Degradation residual trellisplot

We have emphasized the importance of having a solid basis for any model used in extrapolation of sample
degradation paths. Whether or not such a model is available, it is important to assess the adequacy of the
fitted models to the degradation paths. If the model does not even fit the data within the range of the data,
careful consideration should be given to the usefulness of the data for purposes of predicting a failure-time
distribution. Of course, one should always remember that just because the model provides a good fit to the
data and may be adequate for making predictions within the range of the data, there is no guarantee that the
degradation process will continue to follow the fitted model outside of the range of the available data.

The dialog box in [Figure 113]allows the user to request a trellis plot of residuals for the straight lines fit to
(possibly transformed) degradation data. Such plots help one to detect systematic departures from the fitted
model. shows the residual trellis plot for the GaAs laser data. For this example, there appears
not to be any systematic departures from the fitted straight-line model.
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Figure 113 Dialog box to request a residual trellis plot for each of the GaAs laser data regression
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Figure 114 Trellisplot of residualsfor each degradation path for the GaAslaser data.
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14.

13. Special Models

13.1 Generalized gammadistribution
SLIDA wp Special models wp Generalized gamma distribution

13.2 Limited failure population model
SLIDA s Special models wp Limited failure population model

13.3 Generalized (two failure modes) limited failure population model
SLIDA sy Special models wp Generalized (two failure modes) limited failure population model

13.4 Random fatigue limit model
SLIDA s Special models @p Random fatigue limit model

13,5 Two-dimensional warranty bivariate model
SLIDA sy Special models mp Two-dimensional warranty bivariate model

Changing SLIDA Default Options

Using SLIDA sp Change SLIDA default options will bring up the dialog box shown in
allowing one to make global changes to the several of the SLIDA defaults options. Some of these options
were discussed in Sections and Changes are effected immediately after chosen on the dialog pages
(no need to click on “OK” or “Apply”). Changes made when the “ Save changes across sessions’ box is
checked are saved across sessions. To restore the original SLIDA defaults, click on the “Restore defaults”
box. To erase across session changes, click on the Restore defaults’ box when when the “Save changes
across sessions’ box is checked.

Change SLIDA default options [preferences] M= E

B azic | Flat | Print | Cenzor 1D I Mizc |
SLIDA default memon contral Change SLIDA basic defaults
[T Save changes acioss sessions Percent confidence level:

Restare defaults | |95

0K | cancel | apply | 1| ] cument Help |

Figure 115 Basic page of the dialog box for changing SLIDA operation defaults.
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shows the “Print “option page of the dialog box, which allows changing the default number of
digits used in SLIDA tabular output, the default list of quantiles to be estimated, and an option to print out
the variance-covariance matrix of ML estimates when such estimation is performed.

Change SLIDA default options [preferences] M= E3

Basic | Plat | Prirt | Cengaor D I bisc |
— Change SLIDA print defaultz
MHurnber af digits in tables:
|4
(uantiles to be estimated?

IEI.EIEH 00050010

[ Print wariance-covanance matris?

Eann::ell Apply | I<| >| curment Help |

Figure 116 Print option page of the dialog box for changing SL1DA operation defaults.

The “Misc” page, shown in allows the user to choose whether to save the regression
relationship in ML estimation results objects (the choices are: always, never, and multiple regression only).
If the check box is checked, then when alife data object is created, the main part of the object is a character
string giving the name of the data frame to use as part of the data object. Otherwise, the main part of the
data object is the data frame itself. For most purposes, the difference between using these two different
optionsis transparent to the user. For some kinds of analyses, the character string version may use less
memory. The data frame objects are easier to use when it is desired to manually choose a subset of the data
for analysis.
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Change SLIDA default options [preferencesz] M= E3
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Figure 117 Misc page of the dialog box for changing SLIDA operation defaults.

The“Misc” page, in[Figure 117{ also allows one to recreate the SLIDA GUI. Thisis most useful when a
new version of SLIDA has been installed on your system. Clicking the Recreate button will modify the S-
PLUS _Prefsdirectory in the current working folder (most users have separate working folders for different

projects and these would not otherwise be updated when a new version of SLIDA isinstalled elsewherein
the system).
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15. SLIDA Setup and Operation

SLIDA is distributed as a self-extracting executable file Slida.exe. When Slida.exe is executed, it creates a

folder (c:\Slida by default) that contains other folders and files. Thisis the “Slida folder.” A snapshot of the
inside of thisfolder isgivenin

@ Slida M= E3

Fie Edt Yew [Ho Favorbes Help

1

&+ ¥ R Ad| X F = .
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Eack : Lip Cuk Paste Lindg Dl Popetie: Ve
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Elida .......
2 Ga B B ©
- EHH EHH =
descrioion. Sidallesr 2000 ShdaGui Shds  Shdalls=2000  README

1.7590E E] My Computer

Figure 118 View inside the Slida folder

There are two different approaches for setting up SLIDA for operation. The first method, explained in
Section is a little ssimpler, but less flexible. It is appropriate only for a single user on a desktop
computer and only allows the use of one project folder. The second method, described in Section is
more flexible and is preferred. It allows for multiple project folders (e.g., for different projects or different

users sharing the same compuiter). It is possible to start with the first method and then subsequently create
the alternative folders and shortcuts to use SLIDA in the more flexible mode.

15.1 Ingtalling updated version of SLIDA

To install an updated version of SLIDA over an existing version, simply follow the same steps used in the

initial install, outlined in step a) below, installing in the same location, using the default WinZip option to
overwrite any old files.
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15.2 New setup for Single-user/Single-project SLIDA operation
Toinstall SLIDA:

a. Move theSlida.exe file to some location (like your Desktop) and double-click to execute the file.

C.

The WinZip self-extracting file will prompt you to ask if you can to change the default directory
from C:A\SLIDA. It is ok to change this, but the location of the Slida folder will then be different
from that indicated in these instructions, requiring, for example, some minor changes in short cut
properties.

Create a copy of the S-PLUS startup icon shortcut (right-click on and drag the S-PLUS icon;
release the right mouse button, and choose "copy"). Right click on the new icon and choose
"properties’ under "shortcut." This will bring up a dialog box like that shown in Set
S PROJ on the "Target" command line (note: do this on the "Target" and not on the "Start in"
command lin€) of this shortcut to read:

"c:\Program Files\sp2000\cmd\splus.exe'" S PROJ=""c:\SLIDA"

where "c:\Program Files\sp2000\cmd\splus.exe” is the existing path to S-PLUS and depends on the
version of S-PLUS and the option used when S-PLUS was installed. Do not change the first part of
this line. Only add the S PROJ="c:\SLIDA" to the end of the line. Make sure there is a space
between before the S PROJ="c: \ SLI DA". After typing the S PROJ="c:\SLIDA", click on
"apply" and "Close." Then rename the new S-PLUS icon to S-PLUS SLIDA or something similar
(right-click on the icon to get choices including rename). A sample shortcut using the above
default folder names is given in the Slida folder (c:\Slida). The shortcut tab page of the Slida

shortcut Properties dialog box is shownin

Fireup S-PLUS using the S-PLUS_SLIDA icon.

To use SLIDA for analyzing data, you can use either the GUI or the command line (if you have the
“Professional” version of S-PLUS).

116



Slida Properties |

General Shortcut |

Eh.= Slida

T arget type: Application

T arget location; cmd

Target: IFiIes'\spEDDDhcmth FLUS.exe™ S5_PROJ="C:\Slida"

Stark ir; I

Shartcut key: INDne

Bur: I Mormal window j

Find Target. .. | Ehangelcnn...l

k. I Cancel | L |

Figure 119 Shortcut tab page of the Slida shortcut Properties dialog box

15.3 Creating multiple SLIDA project foldersand using SLIDA on a shared computer

As described in the Section after executing the Slida.exe install file and setting up a shortcut, SLIDA
is ready to operate. In some situations, however, it may be desirable to set up an alternative folder or folders
in which to run SLIDA. In particular, some S-PLUS users like to use separate startup folders for different
projects, so that created objects do not get confused from one problem to another. Similarly, if different
users work on the same computer usually they would want to operate using separate S-PLUS/SLIDA startup
files. In addition, it may be desirable (on NT and Windows2000 computers) to install SLIDA in a write-
protected folder to reduce any chance that files in the folder will become corrupted. The SLIDA folder
(found atcC:\Slida by default) contains folders two example SlidaUser folders (SlidaUser2000 and
SlidaUser45, respectively, for S-PLUS versions 2000 and 4.5) and corresponding shortcuts pointing to
these folders.

Start by doing step a) in the Section to install the SLIDA folder. If you copy a SlidaUser folder to C:\,
and if SLIDA was installed in C:\, then the given SlidaUser shortcut can be copied to the desktop and used
without change. Otherwise, some minor adjustments are needed. In particular, the SlidaUser shortcut
properties must point to both the location of S-PLUS and the SlidaUser folder. The file path.txt in the
SlidaUser folder must point to the place where SLIDA was installed.

In general, to set up a user- or project-specific folder to operate SLIDA, do the following (hote the

distinction between the SLIDA folder, the SlidaUser folders, and the SlidaUser shortcuts in the following
instructions):
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a. Make acopy of the appropriate SlidaUser folder (either SlidaUser2000 or SlidaUser45, depending
on which version of S-PLUS you are running) in a convenient place (e.g., in C:\) and, if desired,
give the folder a new name, say corresponding to a user’s name or a project name.

b. If the Slida folder was installed in a place other than the default C:\Slida, the file Path.txt in the
SlidaUser folder should be modified (e.g. using notepad) to point to the location of SLIDA (note
that the \\ in this file is necessary when specifying a path name to S-PLUS). The SlidaUser folder
can be copied and renamed as many times as necessary to create separate S-PLUS/SLIDA startup
folders.

c. Make a copy of the appropriate SlidaUser shortcut (either SlidaUser2000 or SlidaUser45,
depending on which version of S-PLUS you are running) in a convenient place (e.g., the desktop)
and, if desired, give the shortcut a new name.

d. Right-click on the shortcut, choose properties, and go to the shortcut tab. E If necessary, edit the
target line so that the first part pointsto S-PLUS (looking at an existing shortcut to S-Plus will
show how to do this). Then, on the right-hand side of the target line, edit the
S PROJ="C:\SlidaUser2000" so that it points to the location of your particular SlidaUser folder
(or what ever name the folder now has) and its location.

154 Making or remaking the SLIDA menu structure and startup folders

SLIDA is distributed with a Windows folder (in c:\Slida by default) containing a_Prefs folder that contains
the definition of the SLIDA menu structure and a_Data folder containing a .First function that attaches the
SLIDA object folders and loads the SLIDA life data analysis symbols. When you attempt to use S-PLUS in
a target folder that does not contain either the _Prefs or the _Data folder, they are generally created
automatically by S-PLUS (S-PLUS first asks if you want to do this), but when these folders are created by
S-PLUS, they will not be set up to run SLIDA. The SlidaUser contains SLIDA-specific _Prefs and _Data
folders, modified so that they can operate in locations other than inside the SLIDA folder.

If you are using the “professional” version of S-PLUS and, for some reason, you would like to regenerate
the SLIDA/S-PLUS _Prefs folder from scratch, follow the following steps (you need the Professional
version of S-PLUSto do this):

Delete the Prefsfolder in the SLIDA/S-PLUS target folder.

Fire up S-PLUS using a shortcut that points to the target folder (e.g., SlidaUser).

When S-PLUS warnsyou that _Prefs and/or _Data are missing, click OK.

Give the command make.dida.gui( ). Depending on the speed of your machine, it will take from 2
to 5 minutes to finish this setup. When done, S-PLUS will be operating with the default S-PLUS
setup (which differs dightly from the SLIDA setup).

o0 oo

If you are usingthe standard version if S-PLUS, you can rebuild the SLIDA GUI with SLIDA s Change
SLIDA default options, selecting the Misc tab, and clicking on “Re-ceate SLIDA GUI.”

15,5 Commentson using SLIDA (and S-PLUS) on Windows

a. If SPLUS seemsto be hanging or taking too long to execute, you can type <ESC> to break out of
a command.

b. If graphics window becomes corrupted, try the S-PLUS command refresh( ). Alternatively, kill the
graphics window (by clicking the x in the upper right-hand corner of the graphics window). A
fresh graphics window will be started.

C. Asyou use S-PLUS over a period of time, memory usage can build up, and it may be necessary
(especially if you are only working with 32 MB of memory) to restart S-PLUS. The command
check.memory( ) will allow you to monitor this. If you can afford it, install more memory. |
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noticed a big improvement when going from 32 MB to 64 MB, and now | use 128 MB or better. In
extreme cases, S-PLUS may hang and it may be necessary to reboot your machine (. I do not know
whether to blame this on S-PLUS or Windows, but it is clear to me that when taxing the resources
of Windows, operation can get a bit flaky.
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16. Outline of the SLIDA Menu Structure

The following table contains an outline of the SLIDA menu structure. The GUI dialog boxes for the
items shown in regular-faced type ar e still in development.

SLIDA w
Make/summary/view data object mp
Make a life data object
Make recurrence (point-process) data object
Make degradation (repeated measures) data object
Summary/view a data object
Edit a life data object

Plan single distribution study sp
Specify life test planning information (planning values)
Plot life test planning information (planning values)
Plot of approximate required sample size
Simulate a life test
Probability of successful demonstration

Single distribution life data analyses s
Plot nonparametric estimate of cdf and confidence bands
Probability plot with nonparametric confidence bands
Probability plot with parametric ML fit
Likelihood contour plot
Compare distribution ML fits on probability plot
Threshold parameter probability plot with parametric ML fit

Multiple failure mode life data analysis sp
Individual modes
Combined modes (with one or more omitted)
Make life data objects for individual modes

Comparison of distributions life data analysis sp
Probability plot and ML fit: different shapes (slopes)
Comparison likelihood contour plot
Probability plot and ML fit: common shapes (slopes)
Make life data objects for individual groups
Probability of correct selection for specified test plans

Plan an accelerated life test (ALT) wp
Specify an ALT model information (planning values)
Specify an ALT test plan
Plot, summarize, and evaluate an ALT test plan
Simulate an ALT test

Simple regression (ALT) data analysis sp
Censored data scatter plot
Probability plot and ML fit for individual conditions
Prob plot and ML fit for indiv cond: common shapes (slopes)
Probability plot and ML fit of a regression (acceleration)
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Make life data objects for individual groups

Multiple regression (ALT) life data analysis sp
Censored data pairs plot
Censored data scatter plot
Probability plot and ML fit for individual conditions
Prob plot and ML fit for indiv cond: common shapes (slopes)
Probability plot and ML fit of a regression (acceleration)
Conditional stress plot
Sensitivity analysis plot
Make life data objects for individual groups

Regression residual analysis sp
Residuals versus fitted values
Residuals versus possible explanatory variables
Residuals versus observation order
Residual probability plot

Recurrence (point process) data analysissp
Recurrence event plot
Mean cumulative function plot
Compare two mean cumulative functions plot
Convert renewal recurrence data to life data

Degradation (repeated measures) data analysissp
Degradation data plot
Degradation data trellis plot
Accelerated degradation cell-average plot
Convert/extrapolate degradation data to life data
Degradation residual plot

Special models mp
Extended generalized gamma (EGENG) distribution
Limited failure population (LFP) model
Dead on arrival (DOA) population model
Generalized (two failure modes) limited failure population model
Random fatigue limit (RFL) model
Two-dimensional warranty bivariate model

Change SLIDA default options (preferences)
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