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FIGURE 7.1. The class of optimization problems of Eq. 1 can be viewed in terms of a
network of nodes or units, each of which can be in the si = +1 or si = −1 state. Every
pair of nodes i and j is connected by bi-directional weights wij; if a weight between two
nodes is zero, then no connection is drawn. (Because the networks we shall discuss can
have an arbitrary interconnection, there is no notion of layers as in multilayer neural
networks.) The optimization problem is to find a configuration (i.e., assignment of all
si) that minimizes the energy described by Eq. 1. While our convention was to show
functions inside each node’s circle, our convention in so-called Boltzmann networks is
to indicate the state of each node. The configuration of the full network is indexed by
an integer γ , and because here there are 17 binary nodes, γ is bounded 0 ≤ γ < 217.
When such a network is used for pattern recognition, the input and output nodes are
said to be visible, and the remaining nodes are said to be hidden. The states of the
visible nodes and hidden nodes are indexed by α and β, respectively, and in this case
are bounded 0 ≤ α ≤ 210 and 0 ≤ β < 27. From: Richard O. Duda, Peter E. Hart, and
David G. Stork, Pattern Classification. Copyright c© 2001 by John Wiley & Sons, Inc.
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FIGURE 7.2. The energy function or energy “landscape” on the left is meant to suggest the types of opti-
mization problems addressed by simulated annealing. The method uses randomness, governed by a control
parameter or “temperature” T to avoid getting stuck in local energy minima and thus to find the global mini-
mum, like a small ball rolling in the landscape as it is shaken. The pathological “golf course” landscape at the
right is, generally speaking, not amenable to solution via simulated annealing because the region of lowest
energy is so small and is surrounded by energetically unfavorable configurations. The configuration spaces of
the problems we shall address are discrete and are more accurately displayed in Fig. 7.6. From: Richard O.
Duda, Peter E. Hart, and David G. Stork, Pattern Classification. Copyright c© 2001 by John Wiley & Sons, Inc.
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FIGURE 7.3. Stochastic simulated annealing (Algorithm 1) uses randomness, governed by a control parameter
or “temperature” T (k) to search through a discrete space for a minimum of an energy function. In this example
there are N = 6 variables; the 26 = 64 configurations are shown along the bottom as a column of + and
− symbols. The plot of the associated energy of each configuration given by Eq. 1 for randomly chosen
weights. Every transition corresponds to the change of just a single si. (The configurations have been arranged
so that adjacent ones differ by the state of just a single node; nevertheless, most transitions corresponding
to a single node appear far apart in this ordering.) Because the system energy is invariant with respect to a
global interchange si ↔ −si, there are two “global” minima. The graph at the upper left shows the annealing
schedule—the decreasing temperature versus iteration number k. The middle portion shows the configuration
versus iteration number generated by Algorithm 1. The trajectory through the configuration space is colored
red for transitions that increase the energy and black for those that decrease the energy. Such energetically
unfavorable (red) transitions become rarer later in the anneal. The graph at the right shows the full energy
E(k), which decreases to the global minimum. From: Richard O. Duda, Peter E. Hart, and David G. Stork,
Pattern Classification. Copyright c© 2001 by John Wiley & Sons, Inc.
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FIGURE 7.4. An estimate of the probability P(γ ) of being in a configuration denoted by γ is shown for
four temperatures during a slow anneal. (These estimates, based on a large number of runs, are nearly the
theoretical values e−Eγ /T.) Early, at high T, each configuration is roughly equal in probability while late, at
low T, the probability is strongly concentrated at the global minima. The expected value of the energy, E[E]
(i.e., averaged at temperature T), decreases gradually during the anneal. From: Richard O. Duda, Peter E. Hart,
and David G. Stork, Pattern Classification. Copyright c© 2001 by John Wiley & Sons, Inc.
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FIGURE 7.5. In deterministic annealing, each node can take on a continuous value
−1 ≤ si ≤ +1, which equals the expected value of a binary node in the system at tem-
perature T. In other words, the analog value si replaces the expectation of the discrete
variable, E[si]. We let li denote a force exerted by the nodes connected to si. The larger
this force, the closer the analog si is to +1; the more negative this force, the closer is
si to −1. The temperature T (marked in red) also affects si. If T is large, there is a great
deal of randomness and even a large force will not ensure si ≈ +1. At low temperature,
there is little or no randomness and even a small positive force ensures that si = +1.
Thus at the end of an anneal (low T), each node has value si = +1 or si = −1. From:
Richard O. Duda, Peter E. Hart, and David G. Stork, Pattern Classification. Copyright
c© 2001 by John Wiley & Sons, Inc.
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FIGURE 7.6. If the state variables si can assume analog values (as in mean-field annealing), the energy in
Eq. 1 is a general quadratic form having minima at the extreme values si = ±1. In the case illustrated here
N = 3 nodes are fully interconnected with arbitrary weights wij. While the total energy function is three-
dimensional, we show two-dimensional surfaces for each of three values of s3. The energy is linear in each
variable so long as the other variables are held fixed. Furthermore, the energy is invariant with respect to the
interchange of all variables si ↔ −si. In particular, here the global minimum occurs as s1 = −1, s2 = +1 and
s3 = −1 as well as the symmetric configuration s1 = +1, s2 = −1, and s3 = +1 (red dots). From: Richard O.
Duda, Peter E. Hart, and David G. Stork, Pattern Classification. Copyright c© 2001 by John Wiley & Sons, Inc.
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FIGURE 7.7. When a network such as shown in Fig. 7.1 is used for learning, it is im-
portant to distinguish between two types of visible units—the d input units and c output
units, which receive external feature and category information—as well as the remain-
ing, hidden units. The state of the full network is indexed by an integer γ , and because
here there are 17 binary nodes, γ is bounded 0 ≤ γ < 217. The state of the input visible
nodes is described by αi and the output visible nodes by αo. (The superscripts are not
indexes, but merely refer to the input and output, respectively.) In the case shown, αi is
bound in the range 0 ≤ αi < 2d and αo is bound in the range 0 ≤ α0 < 2c. The state of
the hidden nodes is indexed by β, which is bound in the range 0 ≤ β < 2N−c−d . From:
Richard O. Duda, Peter E. Hart, and David G. Stork, Pattern Classification. Copyright
c© 2001 by John Wiley & Sons, Inc.
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FIGURE 7.8. The fully connected seven-unit network on the left is being trained to assign the input pattern
s1 = +1, s2 = +1 to class ω2 by using the Boltzmann learning algorithm. During training, the output s7

(corresponding to ω2) is clamped at +1, and the output s6 (corresponding to ω1) is clamped at −1. All 25 = 32
configurations with s1 = +1, s2 = +1 are shown at the right, along with their energy (Eq. 1). The black curve
shows the energy before training; the red curve shows the energy after training. Note particularly that after
training, all configurations that represent the full training pattern have been lowered in energy and hence
are more probable; most other patterns become less probable after training. Thus, after training, if the input
pattern s1 = +1, s2 = +1 is presented and the remaining network is annealed, there is an increased chance
of yielding the outputs s6 = −1 and s7 = +1, as desired. From: Richard O. Duda, Peter E. Hart, and David G.
Stork, Pattern Classification. Copyright c© 2001 by John Wiley & Sons, Inc.
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FIGURE 7.9. Boltzmann learning of a single pattern is illustrated for the seven-node network of Fig. 7.8. The
(symmetric) matrix on the left shows the correlation of units for the learning component, where the input units
are clamped to s1 = +1, s2 = +1 and the outputs are clamped to s6 = −1, s7 = +1. The middle matrix shows
the unlearning component, where the inputs are clamped but outputs are free to vary. According to Eq. 14,
the weight update should be proportional to the difference between those matrices, as indeed is shown on the
right matrix. Notice, for instance, that because the correlation between s1 and s2 is large in both the learning
and unlearning components (because those variables are clamped), there is no associated weight change,
that is, 
w12 = 0. However, strong correlations between s1 and s7 in the learning but not in the unlearning
component implies that the weight w17 should be increased, as can be seen in the weight update matrix.
From: Richard O. Duda, Peter E. Hart, and David G. Stork, Pattern Classification. Copyright c© 2001 by John
Wiley & Sons, Inc.
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FIGURE 7.10. A Boltzmann network can be used for pattern completion—that is, filling in unknown features
of a deficient pattern. Here, a 12-unit network with five hidden units has been trained with the 10 numeral
patterns of a seven-segment digital display. The diagram at the lower left shows the correspondence between
the display segments and nodes of the network. Along the top, a black segment is represented by a +1, and a
light gray segment is represented as a −1. Consider the deficient pattern consisting of s2 = −1, s5 = +1, but
with the other five inputs (shown as dotted lines in the pattern) unspecified. If these units are clamped and the
full network is annealed, the remaining five visible units will assume values most probable given the clamped
ones, as shown at the right. From: Richard O. Duda, Peter E. Hart, and David G. Stork, Pattern Classification.
Copyright c© 2001 by John Wiley & Sons, Inc.
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FIGURE 7.11. A Hidden Markov Model can be “unfolded” in time to show a trellis, which can be represented
as a Boltzmann chain, as shown. The discrete hidden states are grouped into vertical sets, fully interconnected
by weights Aij (related to the Hidden Markov Model transition probabilities aij ). The discrete visible states are
grouped into horizontal sets, and are fully interconnected with the hidden states by weights Bjk (related to
transition probabilities bjk ). Training the net with a single pattern, or list of Tf visible states, consists of clamping
the visible states and performing Boltzmann learning throughout the full network, with the constraint that each
of the time shifted weights labeled by a particular Aij have the same numerical value. From: Richard O. Duda,
Peter E. Hart, and David G. Stork, Pattern Classification. Copyright c© 2001 by John Wiley & Sons, Inc.
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FIGURE 7.12. A Boltzmann zipper consists of two Boltzmann chains (cf. Fig. 7.11),
whose hidden units are interconnected. The component chains differ in the rate at which
visible features are sampled, and thus they capture structure at different temporal scales.
Correlations are learned by the weights linking the hidden units, here labeled E. It is
somewhat more difficult to train linked Hidden Markov Models to learn structure at
different time scales. From: Richard O. Duda, Peter E. Hart, and David G. Stork, Pattern
Classification. Copyright c© 2001 by John Wiley & Sons, Inc.
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FIGURE 7.13. A basic genetic algorithm is a stochastic iterative search method. Each
of the L classifiers in the population in generation k is represented by a string of bits of
length N, called a chromosome (on the left). Each classifier is judged or scored accord-
ing its performance on a classification task, giving L scalar values fi . The chromosomes
are then ranked according to these scores. The chromosomes are considered in de-
scending order of score and are operated upon by the genetic operators of replication,
crossover, and mutation to form the next generation of chromosomes—the offspring. The
cycle repeats until a classifier exceeds the criterion score θ . From: Richard O. Duda, Pe-
ter E. Hart, and David G. Stork, Pattern Classification. Copyright c© 2001 by John Wiley
& Sons, Inc.
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FIGURE 7.14. Three basic genetic operations are used to transform a population of chromosomes at one
generation to form a new generation. In replication, the chromosome is unchanged. Crossover involves the
mixing or “mating” of two chromosomes to yield two new chromosomes. A position along the chromosomes
is chosen randomly (red vertical line); then the first part of chromosome A is linked with the last part of
chromosome B, and vice versa. In mutation, each bit is given a small chance of being changed from a 1 to a
0 or vice versa. From: Richard O. Duda, Peter E. Hart, and David G. Stork, Pattern Classification. Copyright
c© 2001 by John Wiley & Sons, Inc.
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FIGURE 7.15. One natural mapping in genetic algorithms for pattern recognition is
from a binary chromosome to a binary tree classifier, illustrated here for a simple binary
decision tree. In this example, each of the nodes computes a query or question of the
form “Is ±xi < θ?” and is governed by nine bits in the chromosome. The first bit
specifies a sign, and the next two bits specify the feature queried. The remaining six bits
are a binary representation of the threshold θ . For instance, the leftmost node encodes
the rule “Is +x3 < 41?” (In practice, larger trees would be used for problems with four
features.) During classification, a test pattern is presented to the top decision node,
and depending upon the answer, passes to the right or to the left through the tree to
a node at the next level. This process continues until the pattern comes to a category
label (cf. Chapter 8). From: Richard O. Duda, Peter E. Hart, and David G. Stork, Pattern
Classification. Copyright c© 2001 by John Wiley & Sons, Inc.
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FIGURE 7.16. Four basic operators in genetic programming are used to transform a population of snippets of
code at one generation to form a new generation. In replication, the snippet is unchanged. Crossover involves
the mixing or “mating” of two snippets to yield two new snippets. A position along the snippet A is randomly
chosen from the allowable locations (red vertical line); likewise one is chosen for snippet B. Then the front
portion of A is spliced to the back portion of B and vice versa. In mutation, each element is given a small
chance of being changed. There are several different types of elements, and replacements must be of the same
type. For instance, only a number can replace another number; only a numerical operator that takes a single
argument can replace a similar operator, and so on. In insertion, a randomly selected element is replaced by
a compatible snippet, keeping the entire snippet grammatically well formed and meaningful. From: Richard
O. Duda, Peter E. Hart, and David G. Stork, Pattern Classification. Copyright c© 2001 by John Wiley & Sons,
Inc.
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FIGURE 7.17. Unlike the decision trees of Fig. 7.15 and Chapter 8, the trees shown here
are merely a representation using the syntax of Lisp expressions that implement a single
function. For instance, the upper-right (parent) tree implements (x2x4)/(x3(x4/x1)). Two
parent snippets and break points chosen randomly from allowable ones are shown by
the red line segments. The offspring are formed by the crossover operation, where the
left side of the snippet for parent 1 is concatenated to the right side of the snippet
from parent 2, and vice versa. The resulting functions have an implied threshold or sign
function when used for classification. Thus the function will operate on the features of a
test pattern and emit category ωi if the function is positive, and NOT ωi otherwise. From:
Richard O. Duda, Peter E. Hart, and David G. Stork, Pattern Classification. Copyright
c© 2001 by John Wiley & Sons, Inc.


