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FIGURE 9.1. The No Free Lunch Theorem shows the generalization performance on
the off-training set data that can be achieved (top row) and also shows the performance
that cannot be achieved (bottom row). Each square represents all possible classification
problems consistent with the training data—this is not the familiar feature space. A +
indicates that the classification algorithm has generalization higher than average, a −
indicates lower than average, and a 0 indicates average performance. The size of a
symbol indicates the amount by which the performance differs from the average. For
instance, part a shows that it is possible for an algorithm to have high accuracy on a
small set of problems so long as it has mildly poor performance on all other problems.
Likewise, part b shows that it is possible to have excellent performance throughout
a large range of problem, but this will be balanced by very poor performance on a
large range of other problems. It is impossible, however, to have good performance
throughout the full range of problems, shown in part d. It is also impossible to have
higher-than-average performance on some problems while having average performance
everywhere else, shown in part e. From: Richard O. Duda, Peter E. Hart, and David G.
Stork, Pattern Classification. Copyright c© 2001 by John Wiley & Sons, Inc.
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FIGURE 9.2. Patterns xi , represented as d-tuples of binary features fi , can be placed in
Venn diagram (here d = 3); the diagram itself depends upon the classification problem
and its constraints. For instance, suppose f1 is the binary feature attribute has legs, f2 is
has right arm and f3 the attribute has right hand. Thus in part a pattern x1 denotes
a person who has legs but neither arm nor hand; x2 a person who has legs and an
arm, but no hand; and so on. Notice that the Venn diagram expresses the biological
constraints associated with real people: it is impossible for someone to have a right hand
but no right arm. Part c expresses different constraints, such as the biological constraint
of mutually exclusive eye colors. Thus attributes f1, f2 and f3 might denote brown, green,
and blue, respectively, and a pattern xi describes a real person, whom we can assume
cannot have eyes that differ in color. From: Richard O. Duda, Peter E. Hart, and David
G. Stork, Pattern Classification. Copyright c© 2001 by John Wiley & Sons, Inc.
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FIGURE 9.3. The Venn for a problem with no constraints on two features. Thus all four
binary attribute vectors can occur. From: Richard O. Duda, Peter E. Hart, and David G.
Stork, Pattern Classification. Copyright c© 2001 by John Wiley & Sons, Inc.
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FIGURE 9.4. The bias-variance dilemma can be illustrated in the domain of regression.
Each column represents a different model, and each row represents a different set of
n = 6 training points, Di , randomly sampled from the true function F(x) with noise.
Probability functions of the mean-square error of E = ED[(g(x) − F(x))2] of Eq. 11
are shown at the bottom. Column a shows a very poor model: a linear g(x) whose
parameters are held fixed, independent of the training data. This model has high bias
and zero variance. Column b shows a somewhat better model, though it too is held
fixed, independent of the training data. It has a lower bias than in column a and has the
same zero variance. Column c shows a cubic model, where the parameters are trained
to best fit the training samples in a mean-square-error sense. This model has low bias
and a moderate variance. Column d shows a linear model that is adjusted to fit each
training set; this model has intermediate bias and variance. If these models were instead
trained with a very large number n → ∞ of points, the bias in column c would approach
a small value (which depends upon the noise), while the bias in column d would not;
the variance of all models would approach zero. From: Richard O. Duda, Peter E. Hart,
and David G. Stork, Pattern Classification. Copyright c© 2001 by John Wiley & Sons,
Inc.
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FIGURE 9.5. The (boundary) bias-variance trade-off in classification is illustrated with
a two-dimensional Gaussian problem. The figure at the top shows the true distributions
and the Bayes decision boundary. The nine figures in the middle show different learned
decision boundaries. Each row corresponds to a different training set of n = 8 points
selected randomly from the true distributions and labeled according to the true decision
boundary. Column a shows case of a Gaussian model with fully general covariance
matrices trained by maximum-likelihood. The learned boundaries differ significantly
from one data set to the next; this learning algorithm has high variance. Column b
shows the decision boundaries resulting from fitting a Gaussian model with diagonal
covariances; in this case the decision boundaries vary less from one row to another.
This learning algorithm has a lower variance than the one at the left. Finally, column c
shows decision boundaries learning by fitting a Gaussian model with unit covariances
(i.e., a linear model); notice that the decision boundaries are nearly identical from one
data set to the next. This algorithm has low variance. From: Richard O. Duda, Peter E.
Hart, and David G. Stork, Pattern Classification. Copyright c© 2001 by John Wiley &
Sons, Inc.



n1 = 15 n2 = 8 n3 = 4
x1

x2

x1

x2

x1

x2

n = 27
x1

x2

x1

x2C1 C2 C3

co
m

po
ne

nt
cl

as
si

fi
er

s

fi
na

l c
la

ss
if

ic
at

io
n

by
 v

ot
in

g

R1

R2 R2

R2

R1

R1

R1

R2

FIGURE 9.6. A two-dimensional two-category classification task is shown at the top.
The middle row shows three component (linear) classifiers Ck trained by LMS algorithm
(Chapter 5), where their training patterns were chosen through the basic boosting pro-
cedure. The final classification is given by the voting of the three component classifiers
and yields a nonlinear decision boundary, as shown at the bottom. Given that the com-
ponent classifiers are weak learners (i.e., each can learn a training set at least slightly
better than chance), the ensemble classifier will have a lower training error on the full
training set D than does any single component classifier. Of course, the ensemble clas-
sifier has lower error than a single linear classifier trained on the entire data set. From:
Richard O. Duda, Peter E. Hart, and David G. Stork, Pattern Classification. Copyright
c© 2001 by John Wiley & Sons, Inc.
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FIGURE 9.7. AdaBoost applied to a weak learning system can reduce the training error
E exponentially as the number of component classifiers, kmax, is increased. Because
AdaBoost “focuses on” difficult training patterns, the training error of each successive
component classifier (measured on its own weighted training set) is generally larger
than that of any previous component classifier (shown in gray). Nevertheless, so long
as the component classifiers perform better than chance (e.g., have error less than 0.5
on a two-category problem), the weighted ensemble decision of Eq. 36 ensures that
the training error will decrease, as given by Eq. 37. It is often found that the test error
decreases in boosted systems as well, as shown in red. From: Richard O. Duda, Peter
E. Hart, and David G. Stork, Pattern Classification. Copyright c© 2001 by John Wiley &
Sons, Inc.
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FIGURE 9.8. Active learning can be used to create classifiers that are more accurate
than ones using i.i.d. sampling. The figure at the top shows a two-dimensional problem
with two equal circular Gaussian priors; the Bayes decision boundary is a straight line
and the Bayes error EB equals 0.02275. The bottom figure on the left shows a nearest-
neighbor classifier trained with n = 30 labeled points sampled i.i.d. from the true distri-
butions. Note that most of these points are far from the decision boundary. The figure at
the right illustrates active learning. The first four points were sampled near the extremes
of the feature space. Subsequent query points were chosen midway between two points
already used by the classifier, one randomly selected from each of the two categories.
In this way, successive queries to the oracle “focused in” on the true decision boundary.
The final generalization error of this classifier, E = 0.02422, is lower than the one
trained using i.i.d. samples, E = 0.05001. From: Richard O. Duda, Peter E. Hart, and
David G. Stork, Pattern Classification. Copyright c© 2001 by John Wiley & Sons, Inc.
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FIGURE 9.9. In validation, the data set D is split into two parts. The first (e.g., 90% of
the patterns) is used as a standard training set for setting free parameters in the classifier
model; the other (e.g., 10%) is the validation set and is meant to represent the full gen-
eralization task. For most problems, the training error decreases monotonically during
training, as shown in black. Typically, the error on the validation set decreases, but then
increases, an indication that the classifier may be overfitting the training data. In valida-
tion, training or parameter adjustment is stopped at the first minimum of the validation
error. In the more general method of cross-validation, the performance is based on mul-
tiple independently formed validation sets. From: Richard O. Duda, Peter E. Hart, and
David G. Stork, Pattern Classification. Copyright c© 2001 by John Wiley & Sons, Inc.
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FIGURE 9.10. The 95% confidence intervals for a given estimated error probability p̂
can be derived from a binomial distribution of Eq. 38. For each value of p̂, the true
probability has a 95% chance of lying between the curves marked by the number of test
samples n′. The larger the number of test samples, the more precise the estimate of the
true probability and hence the smaller the 95% confidence interval. From: Richard O.
Duda, Peter E. Hart, and David G. Stork, Pattern Classification. Copyright c© 2001 by
John Wiley & Sons, Inc.
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FIGURE 9.11. Jackknife estimation can be used to compare the accuracies of classifiers.
The jackknife estimate of classifiers C1 and C2 are 80% and 85%, and full widths (twice
the square root of the jackknife estimate of the variances) are 12% and 15%, as shown
by the bars at the bottom. In this case, traditional hypothesis testing could show that
the difference is not statistically significant at some confidence level. From: Richard O.
Duda, Peter E. Hart, and David G. Stork, Pattern Classification. Copyright c© 2001 by
John Wiley & Sons, Inc.
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FIGURE 9.12. The evidence (i.e., probability of generating different data sets given a
model) is shown for three models of different expressive power or complexity. Model h1

is the most expressive, because with different values of its parameters the model can fit
a wide range of data sets. Model h3 is the most restrictive of the three. If the actual data
observed is D0, then maximum-likelihood model selection states that we should choose
h2, which has the highest evidence. Model h2 “matches” this particular data set better
than do the other two models, and it should be selected. From: Richard O. Duda, Peter
E. Hart, and David G. Stork, Pattern Classification. Copyright c© 2001 by John Wiley &
Sons, Inc.
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FIGURE 9.13. In the absence of training data, a particular model hi has available a large
range of possible values of its parameters, denoted �0θ . In the presence of a particular
training set D, a smaller range is available. The Occam factor, �θ/�0θ , measures the
fractional decrease in the volume of the model’s parameter space due to the presence
of training data D. In practice, the Occam factor can be calculated fairly easily if the
evidence is approximated as a k-dimensional Gaussian, centered on the maximum-
likelihood value �̂. From: Richard O. Duda, Peter E. Hart, and David G. Stork, Pattern
Classification. Copyright c© 2001 by John Wiley & Sons, Inc.
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FIGURE 9.14. The probability of error E on a two-category problem for a given number
of samples, n, can be estimated by splitting the feature space into m cells of equal size
and classifying a test point according to the label of the most frequently represented
category in the cell. The graphs show the average error of a large number of random
problems having the given n and m indicated. From: Richard O. Duda, Peter E. Hart,
and David G. Stork, Pattern Classification. Copyright c© 2001 by John Wiley & Sons,
Inc.
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FIGURE 9.15. The test error for three classifiers, each fully trained on the given number
n′ of training patterns, decreases in a typical monotonic power-law function. Notice
that the rank order of the classifiers trained on n′ = 500 points differs from that for
n′ = 10000 points and the asymptotic case. From: Richard O. Duda, Peter E. Hart, and
David G. Stork, Pattern Classification. Copyright c© 2001 by John Wiley & Sons, Inc.
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FIGURE 9.16. Test and training error of a classifier fully trained on data subsets of dif-
ferent size n′ selected randomly from the full set D. At low n′, the classifier can learn
the category labels of the points perfectly, and thus the training error vanishes there. In
the limit n′ → ∞, both training and test errors approach the same asymptotic value, a. If
the classifier is sufficiently powerful and the training data is sampled i.i.d., then a is the
Bayes error rate, EB. From: Richard O. Duda, Peter E. Hart, and David G. Stork, Pattern
Classification. Copyright c© 2001 by John Wiley & Sons, Inc.
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FIGURE 9.17. If the test and training errors versus training set size obey the power-law
functions of Eqs. 49 and 50, then the log of the sum and log of the difference of these
errors are straight lines on a log-log plot. The estimate of the asymptotic error rate a is
then simply related to the height of the log[Etest + Etrain] line, as shown. From: Richard
O. Duda, Peter E. Hart, and David G. Stork, Pattern Classification. Copyright c© 2001
by John Wiley & Sons, Inc.
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FIGURE 9.18. The fraction of dichotomies of n points in d dimensions that are linear,
as given by Eq. 53. From: Richard O. Duda, Peter E. Hart, and David G. Stork, Pattern
Classification. Copyright c© 2001 by John Wiley & Sons, Inc.
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FIGURE 9.19. The mixture-of-experts architecture consists of k component classifiers
or “experts,” each of which has trainable parameters �i, i = 1, . . . , k. For each input
pattern x, each component classifier i gives estimates of the category membership gir =
P(ωr |x, �i). The outputs are weighted by the gating subsystem governed by parameter
vector �0 and are pooled for ultimate classification. From: Richard O. Duda, Peter E.
Hart, and David G. Stork, Pattern Classification. Copyright c© 2001 by John Wiley &
Sons, Inc.


