
Color?

Size? Size?Shape?

round

Size?

yellow
redgreen

thin mediumsmall smallbig

Grapefruit

big small

Watermelon Banana AppleApple

Lemon

Grape Taste?

sweet sour

Cherry Grape

m
edium

level 0

level 1

level 2

level 3

root

FIGURE 8.1. Classification in a basic decision tree proceeds from top to bottom. The questions asked at
each node concern a particular property of the pattern, and the downward links correspond to the possible
values. Successive nodes are visited until a terminal or leaf node is reached, where the category label is read.
Note that the same question, Size?, appears in different places in the tree and that different questions can
have different numbers of branches. Moreover, different leaf nodes, shown in pink, can be labeled by the
same category (e.g., Apple). From: Richard O. Duda, Peter E. Hart, and David G. Stork, Pattern Classification.
Copyright c© 2001 by John Wiley & Sons, Inc.

Grapefruit

Banana Apple

Lemon Cherry Grape

GrapeApple

Watermelon

yes no

no

no

no

no

no

no

no

yesyes

yes yes yes

yes yes

color = Green?

size = big?

size = medium?

color = yellow?

size = small?shape = round?

size = big? taste = sweet?

FIGURE 8.2. A tree with arbitrary branching factor at different nodes can always be rep-
resented by a functionally equivalent binary tree—that is, one having branching factor
B = 2 throughout, as shown here. By convention the “yes” branch is on the left, the “no”
branch on the right. This binary tree contains the same information and implements the
same classification as that in Fig. 8.1. From: Richard O. Duda, Peter E. Hart, and David
G. Stork, Pattern Classification. Copyright c© 2001 by John Wiley & Sons, Inc.

R1

R2
R2

R2

R2

R1 R1

R1

x1

x3

x2

x2

x1

R1

R2

R1

FIGURE 8.3. Monothetic decision trees create decision boundaries with portions perpendicular to the feature
axes. The decision regions are marked R1 and R2 in these two-dimensional and three-dimensional two-
category examples. With a sufficiently large tree, any decision boundary can be approximated arbitrarily
well in this way. From: Richard O. Duda, Peter E. Hart, and David G. Stork, Pattern Classification. Copyright
c© 2001 by John Wiley & Sons, Inc.

0 1
P

i(P)

m
isc

la
ss

ifi
ca

tio
n

entropy

G
ini/variance

0.5

FIGURE 8.4. For the two-category case, the impurity functions peak at equal class fre-
quencies and the variance and the Gini impurity functions are identical. The entropy,
variance, Gini, and misclassification impurities (given by Eqs. 1–4, respectively) have
been adjusted in scale and offset to facilitate comparison here; such scale and offset do
not directly affect learning or classification. From: Richard O. Duda, Peter E. Hart, and
David G. Stork, Pattern Classification. Copyright c© 2001 by John Wiley & Sons, Inc.

.2 .4 .6 .8 1
0

.2

.4

.6

.8

1
 - 1.2 x1 + x2 < 0.1

x1 < 0.27

x2 < 0.32

x1 < 0.07

 x2 < 0.6

 x1 < 0.55

 x2 < 0.86

x1 < 0.81

x1

x2

ω2 ω1

ω2

ω1

ω1

ω1

ω1

ω2

ω2

ω2
R2

R1

R2

R1

.2 .4 .6 .8 1
0

.2

.4

.6

.8

1

x1

x2

FIGURE 8.5. If the class of node decisions does not match the form of the training data,
a very complicated decision tree will result, as shown at the top. Here decisions are
parallel to the axes while in fact the data is better split by boundaries along another
direction. If, however, “proper” decision forms are used (here, linear combinations of
the features), the tree can be quite simple, as shown at the bottom. From: Richard O.
Duda, Peter E. Hart, and David G. Stork, Pattern Classification. Copyright c© 2001 by
John Wiley & Sons, Inc.

0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1

0.04 x1 + 0.16 x2 < 0.11

0.27 x1 - 0.44 x2 < -0.02

0.96 x1 - 1.77x2 < -0.45

5.43 x1 - 13.33 x2 < -6.03

x2 < 0.5

x2 < 0.56x1 < 0.95

x2 < 0.54

x1

ω1ω2

R2

R1

0

ω2

ω1

ω1

ω1

ω1

ω2

ω2

ω2

R1

R2

R2

R1

x2

0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1

x1
0

x2

FIGURE 8.6. One form of multivariate tree employs general linear decisions at each
node, giving splits along arbitrary directions in the feature space. In virtually all inter-
esting cases the training data are not linearly separable, and thus the LMS algorithm is
more useful than methods that require the data to be linearly separable, even though the
LMS need not yield a minimum in classification error (Chapter 5). The tree at the bottom
can be simplified by methods outlined in Section 8.4.2. From: Richard O. Duda, Peter
E. Hart, and David G. Stork, Pattern Classification. Copyright c© 2001 by John Wiley &
Sons, Inc.

a b a c d b d a c b b a c d a c

b d a c

text

x
s = 5

FIGURE 8.7. The general string-matching problem is to find all shifts s for which the
pattern x appears in text. Any such shift is called valid. In this case x = “bdac” is indeed
a factor of text, and s = 5 is the only valid shift. From: Richard O. Duda, Peter E. Hart,
and David G. Stork, Pattern Classification. Copyright c© 2001 by John Wiley & Sons,
Inc.

s

r o b a b i l i t i e s _ f o r _ e s t i m a tp

bad character good suffix

e s

e s t i m a t e s

s + 3

r o b a b i l i t i e s _ f o r _ e s t i m a tp e s

e s t i m a t e s

s + 7

r o b a b i l i t i e s _ f o r _ e s t i m a tp e s

e s t i m a t e s

proposed by
bad-character heuristic

proposed by
good-suffix heuristic

FIGURE 8.8. String matching by the Boyer-Moore algorithm takes advantage of infor-
mation obtained at one shift s to propose the next shift; the algorithm is generally much
less computationally expensive than naive string matching, which always increments
shifts by a single character. The top figure shows the alignment of text and pattern x for
an invalid shift s. Character comparisons proceed right to left, and the first two such
comparisons are a match—the good suffix is “es.” The first (rightmost) mismatched
character in text, here “i,” is called the bad character. The bad-character heuristic pro-
poses incrementing the shift to align the rightmost “i” in x with the bad character “i”
in text—a shift increment of 3, as shown in the middle figure. The bottom figure shows
the effect of the good-suffix heuristic, which proposes incrementing the shift the least
amount that will align the good suffix, “es” in x, with that in text—here an increment
of 7. Lines 11 and 12 of the Boyer-Moore algorithm select the larger of the two pro-
posed shift increments, i.e., 7 in this case. Although not shown in this figure, after the
mismatch is detected at shift s +7, both the bad-character and the good-suffix heuristics
propose an increment of yet another 7 characters, thereby finding a valid shift. From:
Richard O. Duda, Peter E. Hart, and David G. Stork, Pattern Classification. Copyright
c© 2001 by John Wiley & Sons, Inc.

deletion:
remove letter of x

insertion:
insert letter of y into x

exchange:
replace letter of x by letter of y

no change

e x h a u s t e d

e

x

c

u

s

e

d

x

y

source

sink

j

i

0

0 n

m

0 1 2 3 4 5 6 7 8 9

1 0 1 2 3 4 5 6 7 8

2 1 0 1 2 3 4 5 6 7

3 2 1 1 2 3 4 5 6 7

4 3 2 2 2 2 3 4 5 6

5 4 3 3 3 3 2 3 4 5

6 5 4 4 4 4 3 3 3 4

7 6 5 5 5 5 4 4 4 3

FIGURE 8.9. The edit distance calculation for strings x and y can be illustrated in a table. Algorithm 3 begins
at source, i = 0, j = 0, and fills in the cost matrix C, column by column (shown in red), until the full edit
distance is placed at the sink, C[i = m, j = n]. The edit distance between “excused” and “exhausted” is
thus 3. From: Richard O. Duda, Peter E. Hart, and David G. Stork, Pattern Classification. Copyright c© 2001
by John Wiley & Sons, Inc.

s = 11

h e _ p a c e _ t r i c t u r e s _ i n _ t

s t r u t r

sl d

c u e

character mismatch

best pattern match:
one character mismatch
edit distance = 1

FIGURE 8.10. The string-matching-with-errors problem is to find the shift s for which
the edit distance between x and an aligned factor of text is minimum. In this illustration,
the minimum edit distance is 1, corresponding to the character exchange u → i, and
the shift s = 11 is the location. From: Richard O. Duda, Peter E. Hart, and David G.
Stork, Pattern Classification. Copyright c© 2001 by John Wiley & Sons, Inc.

s

c h _ p a t e r s i n _ l o n g s t rr n g

p a t t r s

/

/

/

/

_

pattern match

text

x

/ /

FIGURE 8.11. The problem of string matching with don’t care symbol is the same as that in basic string
matching except that the ∅ symbol—in either text or x—can match any character. The figure shows the only
valid shift. From: Richard O. Duda, Peter E. Hart, and David G. Stork, Pattern Classification. Copyright c© 2001
by John Wiley & Sons, Inc.

<sentence>

<noun phrase> <verb phrase>

<adjective> <noun phrase>

<adjective>
The

<noun phrase>

history

<verb> <adverbial phrase>

sold
<preposition> <noun phrase>

over

<adjective> <noun phrase>

<noun>

copies

1000

<noun>

book

FIGURE 8.12. This derivation tree illustrates how a portion of English grammar can
transform the root symbol, here 〈sentence〉, into a particular sentence or string of ele-
ments, here English words, which are read from left to right. From: Richard O. Duda,
Peter E. Hart, and David G. Stork, Pattern Classification. Copyright c© 2001 by John
Wiley & Sons, Inc.

B

i

j

5

4

3

2

1

1 2 3 4 5

A,C A,C B A,C

S,A B S,C S,A

B B

S,A,C

S,A,C

0

0

b a a b a

strings of length 1

strings of length 2

strings of length 3

strings of length 4

strings of length 5

target string x

FIGURE 8.13. The bottom-up parsing algorithm fills the parse table with symbols that
might be part of a valid derivation. The pink lines are not provided by the algorithm,
but when read downward from the root symbol they confirm that a valid derivation
exists. From: Richard O. Duda, Peter E. Hart, and David G. Stork, Pattern Classification.
Copyright c© 2001 by John Wiley & Sons, Inc.

V
i,k

V
i+1,j-1

V
ij

k=1

V
i,k

V
i+2,j-2

V
ij

k=2

V
i,k

V
i+3,j-3

V
ij

k=3

V
i,k

V
i+4,j-4

V
ij

k=4

i

j

i

j

i

j

i

j

FIGURE 8.14. The innermost loop of Algorithm 4 seeks to fill a cell Vij (outlined in red) by the left-hand side
of any rewrite rule whose right-hand side corresponds to symbols in the two shaded cells. As k is incremented,
the cells queried move vertically upward to the cell in question and move diagonally down from that cell. The
shaded cells show the possible right-hand sides in a derivation, as illustrated by the pink lines in Fig. 8.13.
From: Richard O. Duda, Peter E. Hart, and David G. Stork, Pattern Classification. Copyright c© 2001 by John
Wiley & Sons, Inc.

b

S

A B

AB

a

CC

a

a

BA

b

FIGURE 8.15. This valid derivation of “babaa” in G can be read from the pink lines in
the parse table of Fig. 8.13 generated by the bottom-up parse algorithm. From: Richard
O. Duda, Peter E. Hart, and David G. Stork, Pattern Classification. Copyright c© 2001
by John Wiley & Sons, Inc.

S A
the

mouse

cow

B
was

C

found

seen

D

by

under

E
the

F

barn

farmer

G

FIGURE 8.16. One type of finite-state machine consists of nodes that can emit terminal symbols (“the,”
“mouse,” etc.) and transition to another node. Such operation can be described by a grammar. For instance, the
rewrite rules for this finite-state machine include S → theA, A → mouseB OR cowB, and so on. Clearly these
rules imply this finite-state machine implements a type 3 grammar. The final internal node (shaded) would
lead to the null symbol ε. From: Richard O. Duda, Peter E. Hart, and David G. Stork, Pattern Classification.
Copyright c© 2001 by John Wiley & Sons, Inc.

y z

x

y

x

y z

x

z

FIGURE 8.17. The rule in Eq. 11 identifies the figure on the left as an example of Arch, but not the other
two figures. In practice, it is very difficult to develop subsystems that evaluate the propositions themselves,
for instance Touch(x,y) and Supports(x,y,z). From: Richard O. Duda, Peter E. Hart, and David G. Stork,
Pattern Classification. Copyright c© 2001 by John Wiley & Sons, Inc.

IF Swims(x)
THEN Fish(x)=T

IF (Width(x)>2m)
THEN Fish(x)=F

IF HasHair(x)
THEN Fish(x)=F

IF Runs(x)
THEN Fish(x)=F

IF HasEyes(x)
THEN Fish(x)=T

IF Swims(x)
 HasHair(x)
THEN Fish(x)=F

IF Swims(x)
 Runs(x)
THEN Fish(x)=F

IF Swims(x)
 LaysEggs(x)
THEN Fish(x)=T

IF Swims(x)
 HasScales(x)
THEN Fish(x)=T

IF Swims(x)
 (Weight(x)>9kg)
THEN Fish(x)=F

IF Swims(x)
 HasScales(x)
 HasEyes(x)
THEN Fish(x)=T

IF Swims(x)
 HasScales(x)
 HasGills(x)
THEN Fish(x)=T

IF Swims(x)
 HasScales(x)
 (Length(x)>5m)
THEN Fish(x)=F

IF
THEN Fish(x)=T

FIGURE 8.18. In sequential covering, candidate rules are searched through successive refinements. First, the
“best” rule having a single conditional predicate is found—that is, the one explaining most training data.
Next, other candidate predicates are added, the best compound rule is selected, and so forth. From: Richard
O. Duda, Peter E. Hart, and David G. Stork, Pattern Classification. Copyright c© 2001 by John Wiley & Sons,
Inc.

