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FIGURE 6.1. The two-bit parity or exclusive-OR problem can be solved by a three-
layer network. At the bottom is the two-dimensional feature x; x,-space, along with the
four patterns to be classified. The three-layer network is shown in the middle. The input
units are linear and merely distribute their feature values through multiplicative weights
to the hidden units. The hidden and output units here are linear threshold units, each
of which forms the linear sum of its inputs times their associated weight to yield net,
and emits a +1 if this net is greater than or equal to 0, and —1 otherwise, as shown
by the graphs. Positive or “excitatory” weights are denoted by solid lines, negative or
“inhibitory” weights by dashed lines; each weight magnitude is indicated by the line’s
thickness, and is labeled. The single output unit sums the weighted signals from the
hidden units and bias to form its net, and emits a 41 if its net is greater than or equal
to 0 and emits a —1 otherwise. Within each unit we show a graph of its input-output
or activation function—f(net) versus net. This function is linear for the input units, a
constant for the bias, and a step or sign function elsewhere. We say that this network
has a 2-2-1 fully connected topology, describing the number of units (other than the
bias) in successive layers. From: Richard O. Duda, Peter E. Hart, and David G. Stork,
Pattern Classification. Copyright © 2001 by John Wiley & Sons, Inc.



FIGURE 6.2. A 2-4-1 network (with bias) along with the response functions at different units; each hidden
output unit has sigmoidal activation function f(-). In the case shown, the hidden unit outputs are paired in
opposition thereby producing a “bump” at the output unit. Given a sufficiently large number of hidden units,
any continuous function from input to output can be approximated arbitrarily well by such a network. From:
Richard O. Duda, Peter E. Hart, and David G. Stork, Pattern Classification. Copyright © 2001 by John Wiley
& Sons, Inc.



y
two layer \ R,
\
% R,
X, X,
> X,
X,
A
three layer
y R,
R,
X, X,
> X,

FIGURE 6.3. Whereas a two-layer network classifier can only implement a linear deci-
sion boundary, given an adequate number of hidden units, three-, four- and higher-layer
networks can implement arbitrary decision boundaries. The decision regions need not
be convex or simply connected. From: Richard O. Duda, Peter E. Hart, and David G.
Stork, Pattern Classification. Copyright © 2001 by John Wiley & Sons, Inc.
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FIGURE 6.4. A d-ny-c fully connected three-layer network and the notation we shall
use. During feedforward operation, a d-dimensional input pattern x is presented to the
input layer; each input unit then emits its corresponding component x;. Each of the ny
hidden units computes its net activation, net;, as the inner product of the input layer sig-
nals with weights w;; at the hidden unit. The hidden unit emits y; = f(net;), where f(-)
is the nonlinear activation function, shown here as a sigmoid. Each of the ¢ output units
functions in the same manner as the hidden units do, computing net, as the inner prod-
uct of the hidden unit signals and weights at the output unit. The final signals emitted by
the network, z, = f(nety), are used as discriminant functions for classification. During
network training, these output signals are compared with a teaching or target vector t,
and any difference is used in training the weights throughout the network. From: Richard
O. Duda, Peter E. Hart, and David G. Stork, Pattern Classification. Copyright © 2001
by John Wiley & Sons, Inc.
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FIGURE 6.5. The sensitivity at a hidden unit is proportional to the weighted sum of the
sensitivities at the output units: §; = f'(net;) i wy;8k. The output unit sensitivities are
thus propagated “back” to the hidden units. From: Richard O. Duda, Peter E. Hart, and
David G. Stork, Pattern Classification. Copyright © 2001 by John Wiley & Sons, Inc.
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FIGURE 6.6. A learning curve shows the criterion function as a function of the amount
of training, typically indicated by the number of epochs or presentations of the full train-
ing set. We plot the average error per pattern, that is, 1/nzl’;=1 Jp- The validation error
and the test or generalization error per pattern are virtually always higher than the train-
ing error. In some protocols, training is stopped at the first minimum of the validation
set. From: Richard O. Duda, Peter E. Hart, and David G. Stork, Pattern Classification.
Copyright © 2001 by John Wiley & Sons, Inc.
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FIGURE 6.7. Eight one-dimensional patterns (four in each of two classes) are to be
learned by a 1-1-1 network with steep sigmoidal hidden and output units with bias.
The error surface as a function of wy and wy is also shown, where the bias weights are
assigned their final values. The network starts with random weights; through stochastic
training, it descends to a global minimum in error. Note especially that a low error
solution exists, which indeed leads to a decision boundary separating the training points
into their two categories. From: Richard O. Duda, Peter E. Hart, and David G. Stork,
Pattern Classification. Copyright © 2001 by John Wiley & Sons, Inc.
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FIGURE 6.8. As in Fig. 6.7, except here the patterns are not linearly separable; the error
surface is slightly higher than in that figure. Note too from the error surface that there
are two forms of minimum error solution; these correspond to —2 < x* < —1 and
1 < x* < 2, in which one pattern is misclassified. From: Richard O. Duda, Peter E. Hart,
and David G. Stork, Pattern Classification. Copyright © 2001 by John Wiley & Sons,
Inc.
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FIGURE 6.9. Two-dimensional slices through the nine-dimensional error surface af-
ter extensive training for a 2-2-1 network solving the XOR problem. From: Richard O.
Duda, Peter E. Hart, and David G. Stork, Pattern Classification. Copyright © 2001 by
John Wiley & Sons, Inc.
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FIGURE 6.10. A 2-2-1 backpropagation network with bias and the four patterns of the
XOR problem are shown at the top. The middle figure shows the outputs of the hid-
den units for each of the four patterns; these outputs move across the y;y,-space as
the network learns. In this space, early in training (epoch 1) the two categories are not
linearly separable. As the input-to-hidden weights learn, as marked by the number of
epochs, the categories become linearly separable. The dashed line is the linear decision
boundary determined by the hidden-to-output weights at the end of learning; indeed
the patterns of the two classes are separated by this boundary. The bottom graph shows
the learning curves—the error on individual patterns and the total error as a function
of epoch. Note that, as frequently happens, the total training error decreases monoton-
ically, even though this is not the case for the error on each individual pattern. From:
Richard O. Duda, Peter E. Hart, and David G. Stork, Pattern Classification. Copyright
© 2001 by John Wiley & Sons, Inc.
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FIGURE 6.11. A 3-3-1 backpropagation network with bias can indeed solve the three-

bit parity problem. The representation of the eight patterns at the hidden units (y; y»y3-

as the system learns and the planar decision boundary found by the hidden-
output weights at the end of learning. The patterns of the two classes are indeed

separated by this plane, as desired. The learning curve shows the error on individual

)

space
to-

patterns and the total error J as a function of epoch. From: Richard O. Duda, Peter E.
Hart, and David G. Stork, Pattern Classification. Copyright © 2001 by John Wiley &

Sons, Inc.
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FIGURE 6.12. Seven patterns from a two-dimensional two-category nonlinearly sepa-
rable classification problem are shown at the bottom. The figure at the top left shows the
hidden unit representations of the patterns in a 2-2-1 sigmoidal network with bias fully
trained to the global error minimum; the linear boundary implemented by the hidden-
to-output weights is marked as a gray dashed line. Note that the categories are almost
linearly separable in this y;y,-space, but one training point is misclassified. At the top
right is the analogous hidden unit representation for a fully trained 2-3-1 network with
bias. Because of the higher dimension of the hidden layer representation, the categories
are now linearly separable; indeed the learned hidden-to-output weights implement a
plane that separates the categories. From: Richard O. Duda, Peter E. Hart, and David G.
Stork, Pattern Classification. Copyright © 2001 by John Wiley & Sons, Inc.



sample training patterns

T i
i

nrm
e
et

:

E

learned input-to-hidden weights

FIGURE 6.13. The top images represent patterns from a large training set used to train a
64-2-3 sigmoidal network for classifying three characters. The bottom figures show the
input-to-hidden weights, represented as patterns, at the two hidden units after training.
Note that these learned weights indeed describe feature groupings useful for the clas-
sification task. In large networks, such patterns of learned weights may be difficult to
interpret in this way. From: Richard O. Duda, Peter E. Hart, and David G. Stork, Pattern
Classification. Copyright © 2001 by John Wiley & Sons, Inc.
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FIGURE 6.14. A useful activation function f(net) is an anti-symmetric sigmoid. For the
parameters given in the text, f(net) is nearly linear in the range —1 < net < +1 and its
second derivative, f”(net), has extrema near net >~ +2. From: Richard O. Duda, Peter
E. Hart, and David G. Stork, Pattern Classification. Copyright © 2001 by John Wiley &
Sons, Inc.
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FIGURE 6.15. The error per pattern for networks fully trained but differing in the num-
bers of hidden units, ny. Each 2 — ny; — 1 network with bias was trained with 90 two-
dimensional patterns from each of two categories, sampled from a mixture of three
Gaussians, and thus n = 180. The minimum of the test error occurs for networks in the
range 4 < ny <5, i.e., the range of weights 17 to 21. This illustrates the rule of thumb
that choosing networks with roughly n/10 weights often gives low test error. From:
Richard O. Duda, Peter E. Hart, and David G. Stork, Pattern Classification. Copyright
© 2001 by John Wiley & Sons, Inc.
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FIGURE 6.16. Gradient descent in a one-dimensional quadratic criterion with different learning rates. If n <
Nept, CONvergence is assured, but training can be needlessly slow. If = 54y, a single learning step suffices to
find the error minimum. If 1y, < 7 < 214y, the system will oscillate but nevertheless converge, but training is
needlessly slow. If n > 25y, the system diverges. From: Richard O. Duda, Peter E. Hart, and David G. Stork,
Pattern Classification. Copyright © 2001 by John Wiley & Sons, Inc.
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FIGURE 6.17. If the criterion function is quadratic (above), its derivative is linear (be-
low). The optimal learning rate 5, ensures that the weight value yielding minimum
error, w*, is found in a single learning step. From: Richard O. Duda, Peter E. Hart, and
David G. Stork, Pattern Classification. Copyright © 2001 by John Wiley & Sons, Inc.



FIGURE 6.18. The incorporation of momentum into stochastic gradient descent by
Eq. 37 (red arrows) reduces the variation in overall gradient directions and speeds learn-
ing. From: Richard O. Duda, Peter E. Hart, and David G. Stork, Pattern Classification.
Copyright © 2001 by John Wiley & Sons, Inc.
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FIGURE 6.19. In learning with hints, the output layer of a standard network having ¢
category units is augmented with hint units. During training, the target vectors are also
augmented with signals for the hint units. In this way the input-to-hidden weights learn
improved feature groupings. The hint units are not used during classification, and thus
they and their hidden-to-output weights are removed from the trained network. From:
Richard O. Duda, Peter E. Hart, and David G. Stork, Pattern Classification. Copyright
© 2001 by John Wiley & Sons, Inc.
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FIGURE 6.20. When weights are initialized with small magnitudes, stopped training
leads to final weights that are smaller than they would be after extensive training. As
such, stopped training behaves much like a form of weight decay. From: Richard O.
Duda, Peter E. Hart, and David G. Stork, Pattern Classification. Copyright © 2001 by

John Wiley & Sons, Inc.
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FIGURE 6.21. The quickprop weight update takes the error derivatives at two points
separated by a known amount, and by Eq. 53 computes the next weight value. If the
error can be fully expressed as a second-order function, then the weight update leads
to the weight (w*) leading to minimum error. From: Richard O. Duda, Peter E. Hart, and
David G. Stork, Pattern Classification. Copyright © 2001 by John Wiley & Sons, Inc.
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FIGURE 6.22. Conjugate gradient descent in weight space employs a sequence of line searches. If Aw(1) is
the first descent direction, the second direction obeys Aw'(1)HAw(2) = 0. Note especially that along this
second descent, the gradient changes only in magnitude, not direction; as such, the second descent does not
“spoil” the contribution due to the previous line search. In the case where the Hessian is diagonal (right),
the directions of the line searches are orthogonal. From: Richard O. Duda, Peter E. Hart, and David G. Stork,
Pattern Classification. Copyright © 2001 by John Wiley & Sons, Inc.
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FIGURE 6.23. The left column shows a signal x(t); beneath it is an arbitrary response
function w,(t). At the bottom is the response of the filter as a function of the offset T,
as given by Eq. 62. The right column shows the the case where the input and response
function “match.” The two response functions, w,(t) and w*(t) here have the same
energy. Note particularly at the bottom that the maximum output in this case is greater
than in the nonmatching case at the left. From: Richard O. Duda, Peter E. Hart, and
David G. Stork, Pattern Classification. Copyright © 2001 by John Wiley & Sons, Inc.
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FIGURE 6.24. A time delay neural network (TDNN) uses weight sharing to ensure that
patterns are recognized regardless of shift in one dimension; in practice, this dimension
generally corresponds to time. Thus all weights shown in red are forced to have the
same value. In this example, there are five input units at each time step. Because we
hypothesize that the input patterns are of four time steps or less in duration, each of
the hidden units at a given time step accepts inputs from only 4 x 5 = 20 input units,
as highlighted in gray. An analogous translation constraint is also imposed between the
hidden and output layer units. From: Richard O. Duda, Peter E. Hart, and David G.
Stork, Pattern Classification. Copyright © 2001 by John Wiley & Sons, Inc.
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FIGURE 6.25. The form of recurrent network most useful for static classification has the
architecture shown at the bottom, with the recurrent connections in red. It is functionally
equivalent to a static network with many hidden layers and extensive weight sharing,
as shown above. From: Richard O. Duda, Peter E. Hart, and David G. Stork, Pattern
Classification. Copyright © 2001 by John Wiley & Sons, Inc.



21 22 Tk Ze

FIGURE 6.26. The training of a multilayer network via cascade-correlation begins with
the input later fully connected to the output layer (black). Such weights, wy;, are fully
trained using an LMS criterion, as discussed in Chapter 5. If the resulting training error
is not sufficiently low, a first hidden unit (labeled 1, in red) is introduced, fully inter-
connected from the input layer and to the output layer. These new red weights are fully
trained, while the previous (black) ones are held fixed. If the resulting training error is
still not sufficiently low, a second hidden unit (labeled 2) is likewise introduced, fully
interconnected; it also receives a the output from each previous hidden unit, multiplied
by —1. Training proceeds in this way, training successive hidden units until the train-
ing error is acceptably low. From: Richard O. Duda, Peter E. Hart, and David G. Stork,
Pattern Classification. Copyright © 2001 by John Wiley & Sons, Inc.
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FIGURE 6.27. The saliency of a parameter, such as a weight, is the increase in the
training error when that weight is set to zero. One can approximate the saliency by
expanding the true error around a local minimum, w*, and setting the weight to zero. In
this example the approximated saliency is smaller than the true saliency; this is typically,
but not always, the case. From: Richard O. Duda, Peter E. Hart, and David G. Stork,
Pattern Classification. Copyright © 2001 by John Wiley & Sons, Inc.



i

al
\

i

\M M
i 4
NS

=

0

FIGURE 6.28. The figure shows a quadratic error surface as a function of weights, /(w)
and the global minimum at w*. In the second-order approximation to the criterion func-
tion, Optimal Brain Damage assumes the Hessian matrix is diagonal, while Optimal
Brain Surgeon uses the full Hessian matrix. From: Richard O. Duda, Peter E. Hart, and
David G. Stork, Pattern Classification. Copyright © 2001 by John Wiley & Sons, Inc.



