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Chapter 1

11 -1
1.1. A = 0 of.
-3 5

1.2. (a) B must be a 3 x 2 matrix.

10 -2
(b) B = {10 -2}.

10 -2
21 -3
(c) A+B= |10 -2].
7 3
-3 2 24 -5
1.3. Since C = 3 -6/, (A +B) -C = 7 41.
5 -4 2 7
1.4. (a) (D + E) =[5-432); (D+E)+F-=7/[111-13].
(b) (E + F) =[76 -42]; D+ (E+ F) =111 1 -1 3].

1.5. Since A has dimensions 2 x 3, B must be 3 x n in order
to postmultiply A and B must be m x 2 to premultiply A. (a) BA is
possible, AB is not. (b) Both AB and BA are possible. (c)
Neither is possible. (d) As in (b), both are possible. (e)
Neither is possible.

17 -16 31], AC = [12 9 12

1.6. AB = [ 28 37 44], AB + AC =

45 -32 83
29 -7 431, _[2 8 10 29 -7 43
[73 5 127]' B+C-= [9 -5 11]' A(B +C) = [73 5 127]'
1.7. (a) BC = [;gg], A(BC) = -700. (b) AB = [-26 -22]1, (AB)C
= -700.
1.8. A, =1 2|, a_=12], a,, =101, A,, = [0]; B,, =
8. Ry = lg 6] P12 = [7]r B2y = + By, i By

_To ) _ s
]' Biz = [2]' Byp = [31. By, = [4]1. So RyyBy,y = [15]' R12B21
5
1

_ _ T4 _ 20
]' Ay1Bp = [11. AypBy; = [01. AyyByy = [12]' R12Byp = [28]'
B

= [0] and A22B22 = [0]. This means that

51, [15] | [ 4 20 20 | 24

AB = ||16 21 | |12 28f| = |37...40
SSREN (R TR ) 110

which is the same as the product AB obtained directly.

1
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1.9. (a) -2. (b) 1. (c) -4.

1.10. (a) Columns (and rows) equal. (b) Column 3 = 3 x
column 1. (c) Row of zeros. (d) Column 2 = 5 x column 3. (e) Row 1
= row 3.

1.11. (a) |Al = -1 = 0, so A_l exists and there is a unique
solution. (b) Same as (a). (c) |A|l = 0; equation 2 is just four
times equation 1, so this is one equation in two unknowns. (d) |A|
= 0; the left-hand side is the same as in (c), but now b2 = 25,
which is not four times &,. These are two parallel lines in

1
solution space.

- [ 4]
1.12. X = [14_.

1.13. (a) Al - [_;;ii i;;;]. (b) |B| = 0 so there is no
4, fr o o
inverse. (c) C =10 1 0 |. This illustrates the general rule
0 0 172

for inverses of diagonal matrices that the inverse contains

-1 0.5 0.25 -1
reciprocals of the original elements. (d) D = 0 -0.5 1].
-0.5 -0.25 2

1.14. (a) o(A) = 1. (b) p(B) = 2. (c) o(C) = 1. (d) o(D) =

1. (e) p(E) = 2. (f) o(F) = 3. (g) »(G) = 2.

1.15. Evaluate |A| down column j; evaluate |A’| across row
j. The elements in column j of A are the same as the elements in
row j of A'’. It is also easy to show that the cofactors of the
elements in column j of A are the same as the cofactors of the

elements in row j of A’.

1.16. From (1-17), adj A = [Aji]' Then (adj A)’ = [Aij]: A’
= [aji], so adj A’ = [Aij] and (adj A)’ = adj A’ = [Aij].

1.17. From (1-18), A1 = (1/1Al)(adj A). So (A1)’ =
(1/1A])(adj A)’ . Also from (1-18), (A’) ! = (1/1a’|)(adj A’).
Since (adj A) = (adj A’) (Problem 1.16) and |A| = |A’| (Problem
1.15), a1y = (a)7L.

1.18. For an n x n matrix A, use elements from row i, Qg
ey ain and cofactors from row k (# i), Akl' e, Akn' giving

%i1Bg1 * -0 * GipByg ()
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Now imagine that row k in A is replaced by row i; call this matrix
i, so rows i and k in ; are the same. From Property 4(a) of
determinants, we know that Iil = 0, because A has two equal rows.
Find lil by ordinary expansion across row k; this will be

IAl = a; By + -oo v 2 By =0
This is the same as (*), which must therefore also be zero.
1.19. Let A be an m x n matrix A = [A1§ ... EAn]. Then A’ =
(Al)'
i and AA’ = [A,(A,)" + ... + A (A )’']. Consider a typical
’ 1'771 n'n
()
element in this summation,
“13 “13%13 “13%23 -+ “13%n3
A.(A.)" = |i L ee.a .1 = lasia.. a,.a,. ... a,.a__.|. This
(A3 I LS ¥ nj] 25913 “23%23 23%nj *
nj i ! i
a .a,.. a QA . ... a_.a .
nj 1j "nj 2j nj nj

is symmetric, for any j = 1, ..., n, and so each of the products
in [Al(Al)' + ... + An(An)'] will be symmetric.

1.20. The element in row i and column j of AB is (iA)(Bj),
where iA = row i of A. Then the element in row j and column i of
(AB)’ is (Bj)'(iA)'. Row j of B’ is (Bj)' and column i of A’ is
(iA)', so the element in row j, column i of B'A’ = (Bj)'(iA)'.
Since the element in row j, column i of (AB)’ is the same as the
element in row j, column i of B’A’, the two matrices are equal.

1.21. Given (AB) and from the fundamental definition of an

inverse, (AI\B)(I\B)“l = I. Since A is nonsingular, B(aB) ! = Al

Since B is also nonsingular, (AB)—1 = g 1a7L,

1 4 3 -1 -0.25 -2 1.75
1.22. Suppose A 2 3 4}; then A = 0.5 -1 0.5 |.

]

3 4 5 -0.25 2 -1.25

2 8 6 -1 -0.125 -1 0.875
Let o« = 2; (2A) = |4 6 8| and (2A) = 0.25 -0.5 0.25 |,
6 8 10 -0.125 1 -0.625

which is clearly (1/2)A_1.

1 -1 -1

For the general case, (0A) ~ = A o = = a1

A_l

scalar) = (l/a)l-\_1 which is what was to be shown.

(since o is a

1.23. (a) Yes, since |A|l # 0. (b) Yes, for the same reason
as in (a). (c) No, since the 4 x 4 matrix made up of these four

3

o
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columns is singular. (d) No, because there are too few vectors;
three linearly independent vectors are needed for three

dimensional vector space.
1.24. Using the X’'AX form for these quadratic forms

-1 0.5 0
(a) A= |0.5 -1 1{. |A,| = -1, |A,] = 0.75, |A,| =
0 1 -4 1 2 3

-2, so the quadratic form is negative definite [from (1-40)].
(b) A = L_g —g]. IA;l =2, |A,l = 3, so the quadratic
form is positive definite [from (1-40)].

1, |a,l = 0.75, |&4]

[ 1 -0.5 -0.5
(c) A = }|-0.5 1 -0.5}. lAll
[-0.5 -0.5 1

= 0, so this quadratic form is neither positive definite nor
negative definite. However, |#,(1)| = Iﬂi(Z)l = lﬂi(3)l = 1;
?ﬂé(l)l = |#,(2)] = lﬂé(3)| = 0.75; Iﬂé(l)l = lA3| = 0, so the

quadratic form is positive semi-definite [from (1-41)].
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Chapter 2

2.1. (a) e(A) = 1, p(AiB) = 2. Inconsistent system with no
solution; the equations are parallel lines in solution space.

(b) o(A) = 2, p(AiB) = 2. Homogeneous equations, so
the system is consistent. Since p(A) < 3, there are multiple
solutions. The two planes intersect in a line in solution space.

(c) p(A) = 2, p(AiB) = 2. Again, a consistent system.
Any one equation is redundant; the remaining set of two equations
in three unknowns has multiple solutions.

(d) o(A) = 2, p(AiB) = 3. Inconsistent system; no
solutions.

0
2.2. (a) There are two basic solutions, X = [-10] and X =

20 5
-10].
0

dropped, leaving a consistent system of two equations and three

(b) Since p(A) = 2 and p(A{B) = 2, any equation can be

unknowns with at most Cg basic solutions. They are (i) with x1 =

0, Xy = 0.5 and Xq = 1. (ii) With Xy = 0, Xy = -1 and xXgq = 2.
(iii) With x3 =0, xl = x2 = 1. s

(c) Here there are possibly as many as C2 = 6 basic
solutions. (i) Set Xy =%y = 0. Then Xy = -10, X4 = 10. (ii)

Set x
Then x

1 =%3 = 0. Then Xy = 5, Xq = 0. (iii) Set Xy = X, = 0.

2 = 5, xg = 0. [Note that this is not distinguishably
different from the solution in (ii).] (iv) Set Xy = Xg = 0. Then
x1 = 10, Xy = 0. (v) Set x2 4= 0. Then x, = 10, x3 = 0.

[This is the same as the solution in (iv).] (vi) Set Xq = X, = 0.

= X

The coefficient matrix of the remaining 2 x 2 system is singular,
so this possible basic solution does not exist.

2.3. (a) e(A) = 2 (= n), p(AiB) = 2. This is a consistent
system with a unique solution; but equation 3 = 3 x equation 1, so
either can be dropped. Dropping equation 3, the solution is xl =
-19, X, = 11. You will find the same solution if equation 1 is
dropped.

(b) #(R) = 2 (= n), p(A{B) = 3. This is an
inconsistent system. If any one equation is ignored, the
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remaining 2 x 2 system has a unique solution.

(c) Again, p(A) = 2 (= n), o(A{B) = 3. Inconsistent
system; equations 1 and 3 are parallel, so solutions to a reduced
system with equations 1 and 2 or with equations 2 and 3 could be
found.

(d) e(A) = 2 (= n), p(AI/B) = 2. This is a consistent
system; if any equation is dropped, the remaining system can be
solved for a unique solution. [If equation 3 is dropped, this is
just the system in part (a), above.]

2.4. (a) Since |A| = 0, the answer is no.

(b) Here |A| # 0, so there is a unique solution.

(c) Same as (b); there is a unique solution.

2.5. (a) p(A) = 2, p(AiB) = 3 (= m and n). Inconsistent
system. Equations 1 and 3 are parallel planes in three
dimensional solution space; equation 2 cuts them.

(b) o(A) = 1, o(AIB) = 2 < m. Inconsistent system with
one redundant equation. Equations 1 and 2 describe the same
plane; equation 3 is parallel to it.

(c) e(A) = 2 (= n), p(AIB) = 2. Consistent system with
a unique solution. But since o(A) < m, there is one redundant
equation.

(d) o(A) = 2 (= n), o(AiB) = 3. Inconsistent system.
The—three equations intersect in three different points in two
dimensional solution space.

(e) e(A) = 2 (< n), p(AIB) = 2 (< m). This set of
homogeneous equations has nontrivial, nonunique solutions. Since
e(AiB) # m, one [m - op(A{B) = 3 - 2] equation is redundant. These
are two intersecting planes in three dimensional solution space.

(f) p(A) = 1, p(AiB) = 1. Consistent system with one
redundant equation (equation 2 = 2 x equation 1). This is one
plane in three dimensional solution space.

(g) #(A) = 1, ¢(AiB) = 2. Inconsistent system; two
parallel planes.

2.6. (a) For a homogeneous system, ¢ = 0. Since (Al = ab -
10, the system will have multiple solutions when ab = 10, so that
IAl = 0.
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(b) For a nonhomogeneous system, c # 0. Using Cramer's

rule, Xy = -c/(ab - 10) and X, = ac/(ab - 10), so Xy = 0 if and
only if a = 0.
2.7. (a) Here |A|l = - a-b + 2. So, ifa+b#=2, |[Al #0

and there will be a unique solution.

(b) The system will be inconsistent if o(A) < e(AiB);
that is, when o(AiB) = 3 and p(A) = 2, as when a + b = 2. [This
is the only possibility; o(AiB) = 2 and p(A) = 1 is impossible

since there is no choice of a and b that makes p(A) = 1.] We will
have ¢(A{B) = 3 if any of the following hold:
2 a 10 2 -1 10
b -4 -30{ = 3a + 2ab + b + 18 # 0, or b 1 -30] = 2b + 6
-1 1 -20 -1 0 -20
a -1 10
# 0 or |-4 1 -30}| = 2a - 10 # 0. Therefore, if a # 5 but a + b
1 0 -20

= 2, or if b®# -3 but a + b = 2, the system will be inconsistent.
(c) There will be infinitely many solutions if the
system is consistent and if o(A) [= e(AiB)] < 3; that is, if a = 5
and b = -3.
2.8. (a) There may be as many as Cg = 3 basic solutions.
However, letting Xy = 0 produces a 2 x 2 system with a singular
coefficient matrix. If xy = 0, then x, = 2 and xq = 1. 1If xg =

0, then x. = 2 and Xy = 2.

' (b) Any nonbasic solution is found by setting either Xy
or x3 equal to some nonzero number and solving the remaining
system. For example, if x2 = 5, the equation system is

4x1 + 6x3 = -1
10x1 + 4x3 = 14
with solution xl = 2 and x3 = -1.5; so the complete nonbasic
solution is X = [2 5 -1.5}'

2.9. (a) Here p(A) = 2 (< n = 3), so there is no way that

the system can have a unique solution.

(b) For there to be partial solutions, the system must
be inconsistent. This means that o(A{B) must be 3; this will be
true if, for example, B = [100 5 208]’. Then partial solutions
will be those that satisfy two of the three equations. Using just

equations 1 and 2, a basic solution can be found by letting, say,

7

o
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x, = 0. Then Xy = 0.8537 and Xy = 0.4848, so X = [0.8537 0.4848
0]’ is a partial (and basic) solution to this system. Letting x5
= ¢, for ¢ # 0, would generate a nonbasic partial solution. Also,
the right inverse for the 2 x 3 system of equations could be used
to generate a partial solution.

2.10. (a) Since 2(A) = 3 (< n = 4), the kinds of solutions
possible depend on B and in particular on p(A{B). If po(AiB) = 4,
the system is inconsistent. The kinds of possible partial
solutions are illustrated in Figures 2.5(f) and (g) for the n = 3
case. If p(AiB) = 3, there are multiple solutions. The analog in
three dimensional solution space is illustrated by Figure 2.5(d).

(b) Here p(A) = 4, so there will be a unique solution.

(c) As in (a), ©o(A) = 3; now o(A{B) = 3, so there are
multiple solutions.

(d) Again, o(A) = 3 but now p(AiB) = 4, so the system
is inconsistent.

2.11. (a) Two linear equations, one unknown; consistent
system. Therefore either equation is redundant and there is a
unique solution. Example: 2x1 = 4, X = 2.

(b) Three linear equations, three unknowns;
inconsistent system. Example: two parallel planes in three
dimensional solution space, and a third plane that cuts through
them.

(c) Four linear equations, four unknowns. The rank
results are impossible, because either p(A) and o(AiB) are equal
or else p(A{B) is larger by 1. Conclusion: Computer or human
error!

(d) Three equations, two unknowns; consistent system.
Therefore there is one redundant equation; the unique solution can
be found using any two of the three equations. Example: xl + Ox2
1 2 = 30.

(e) Two equations, two unknowns. Same conclusion as

= 10, Oxl +x, = 20, x, + x
(c), since the smallest rank that a matrix can have is 1 (except
for the trivial case of the null matrix, but if that were the

coefficient matrix for an equation system it would mean that you

had no equation system at all; try it).
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2.12. Here p(A) = 2 and p(AiB) = 3. (You might notice that
the first two equations define the same line; the second is just
-7 times the first.) This is an inconsistent system with partial
solutions. For equations 1 and 3, X = [0.4 0.4]’; for equations
1 and 4, X = [0.5 1]1’; for equations 3 and 4, X = [0.5 0.5]'.

2.13. (a) This results from the fact that the determinant of
a triangular matrix is the product of the elements on the main
diagonal, which is obvious in the 2 x 2 case and not difficult to
show (from the general definition of a determinant) for the n x n
case. For example, for an upper triangular matrix A, evaluate the
determinant by expansion along the bottom row which contains all

zeros except for e n- So |Al = annAnn' But by similar reasoning,
A= an—l,n—lAn—l,n—l’ etc. Eventually it will turn out that [A]
= annan—l,n—l"'a22a11' which is what was to be shown.

(b) If you examine the general case for a 3 x 3 upper
triangular matrix A, you will see that (adj A) must be upper
triangular and hence A_l will also be upper triangular. Then the
same result follows for the 4 x 4, ..., n X n case, by examination

of the structure of the cofactors in increasingly large cases.
_ {2 1]. _J1 o 2 1
(c) Let A = [4 8]’ then L = [2 1] and U = [0 6]'

Straightforward matrix multiplication confirms that A = LU and

that a~1 = y~iL7t.

For the general case, let A =

®T e
>0 0
o 0

]. Starting with

column 1, subtraction of (d/a) x row 1 from row 2 and subtraction
of (g/a2) x row 1 from row 3 produces
a b c
A =10 m33/a m32/a
0 myz/a myy/e
where mij is the minor of aij' Next, subtraction of (m23/m33) b.4

row 2 from row 3 produces

a b c

U =10 m33/a m32/a
0 0 (myy/a) - (myzm3y/ma3®)
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Recording these row multipliers in the lower part of a 3 x 3

identity matrix generates

1 0 0
L = f{d/a 1 0
g/a my3z/m3z 1
You can easily establish that A = LU. You can also find both U“1
and L™} and then show that (i) LL™) = I and Uu™! = I and (ii) A7!
= ulml,
24 0.473
2.14. (a) X = [48} (in millions of dollars). (b) X = [O.Bﬁ]
48 0.3
(in millions of dollars).
2.15. (a) The equations are
11t X1t Xg3 = 10
Xy1 * Xgp ¥ Xp3 = 25
X1q * X1 = 15
X19 * oY) = 15
X13 * X23 = O
(b) In AX = B form, this is
1 1 1 0 O O -kll- 10
0 0 0 1 1 1 X159 25
1 0 01 0 O X13 = 15
0 1. 0 0 1 O X1 15
0 01 0 0 1 X232 5
.x23-

(c) This is a set of 5 linear equations in 6 unknowns.

The maximum number of basic solutions is Cg

4

e(A{B)

6. However, since

the number of distinguishably different equations,

this is really a system of 4 different linear equations in 6

unknowns. (You can see,

for example,

that equation 6 is a linear

combination of equations 1 through 5; namely equation 6 = equation

1 + equation 2 + equation 3 - equation 4 - equation 5.)
means that there are a maximum of CZ

This

15 basic solutions. Here

is the coefficient matrix, A, that remains after equation 5 is

deleted:

10
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1 1100 0
. Jo o 0o 1 1 1
A=1H o001 0 o0
01 00 1 0
(d) Let B = [10 25 15 15]°, the original B with &

5
removed. You can easily verify that there are at least two 4 x 4

submatrices in A for which ©(A) = ©o(A{B) and so for which basic
solutions exist.
2.16. Here is an example

Xy X, = 10
2x1 + 3x2 = 40
3x1 + 3x2 = 30
4x1 + 6x2 = 80
7x1 + 7x2 = 70

In this case, p(A) = p(AiB)
same line; equations 2 and 4 define a second line in solution

2; equations 1, 3 and 5 define the

space. The unique solution is X = [-10 20]'.

2.17. (a) X = [fg%].

(b) Now the system is inconsistent.

(c) As in part (b), p(A) = 1, since A is the same. The
first element in B is now 200, so the question is, what value must
bz have so that o(AiB) = 1 also, making the system consistent.

The factor of proportionality between rows 1 and 2 of A is 200, so
b2 must be 40,000.

2.18. Sell 260 parcels of poorly developed land and buy 150
parcels of undeveloped land.

2.19. Increase type 1 projects by 54; decrease types 2 and 3

by 19 and 17, respectively.

1 1 1 10
2.20. Here (AiB) = |2 2 2 20|. Subtracting twice row 1
7 3 3 10

from row 2 and seven times row 1 from row 3 (in order to produce a
0 in row 2, column 1 and in row 3, column 1), generates

1 1 1 10
[0 0 0 0]. Interchanging rows 2 and 3 and then dividing
0 -4 -4 -60

1 1 1 10

row 2 by -4 produces {0 1 1 15|. It is clear that equation 2
0 0 O 0
11

o
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in the original set (now row 3) can be ignored; if you look at the
original (A{B) matrix, it is clear that equations 1 and 2 are
equal, so either can be ignored. We are left with two equations
and three unknowns, for which basic solutions can be found. For
example, setting xXq = 0, you would have Xy = 15 (from row 2 of

the final matrix) and so x, = -5 (from row 1 of that matrix).

1
, 1 2 3 3
2.21. Here (AiB) = |2 4 6 3| and after two elementary row
1 1 1 3

operations to generate zeros in positions a21 and a31, we have

1 2 3 3
[0 0 0 -3]. Dividing row 3 by -1 and interchanging rows 2
0o -1 -2 0

1 2 3 3
and 3 leads to [0 1 2 0]. The inconsistency in this equation
0O 0 0 -3

system is clear from row 3, where it is required that 0x1 + Ox2 +
0x3 = -3. (Compare with the final reduced matrix in Problem 2.20,
where there was no inconsistency.)

2.22. Subtracting twice row 1 from row 2, to force ey, to
zero, puts zeros in all of row 2. Interchanging rows 2 and 3,
subtracting row 1 from (the new) row 2, and then dividing row 2 by

1 2 1 3 4
-1 leads to |0 1 -2 -1 2|. As in Problem 2.20, the second
0 0 0 0 0

equation (here now in row 3) can be ignored; in the original
system, equations 1 and 2 are the same. So basic solutions can be
found to two equations in four unknowns. For example, setting x3
=X, = 0, Xy = 2 (from row 2 of the final matrix) and so Xy = 0
(from row 1 of that matrix). So this happens to be a degenerate
basic solution.

2.23. Forcing 231 to zero (subtracting row 1 from row 3)

1 0 2
generates [0 1 2]. Again, this shows that an equation, this
0 1 2

time either the second or the third, is unnecessary (redundant),
since these rows now contain exactly the same information. A
solution is immediately seen to be X = Xy = 2. (The 2 x 3
submatrix containing the first two rows of the final matrix is in
fact in reduced echelon form.)

12
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2.24. After forcing @31 to zero (again, by subtracting row 1

1 0 2

from row 3), we have |0 1 2|, and it is clear that the
0 1 1

requirements in rows 2 and 3 are inconsistent.

2.25. (a) (AiB) = [g g 1;] which can be reduced to

[1 0.667 2.333]
2

0 1 (echelon form). (b) The reduced matrix in (a)

further reduces to [é 2 ;] (reduced echelon form). (c) L =
[% 2] and U = [‘é _i] and indeed X = U 'L 7!B = [12].
1 0 3 2 4
2.26. (a) aiB) = |72 1 5 3 Il ana this can be
0o 0 -3 7 0
1 0 3 2 4
reduced to the following echelon form: g é 1? ? 0.%?429 .
0 O 0 1 0.21429

Backward substitution generates, in turn, Xy = 0.21429, x3 = 0.5,

X, = 7.92857 and Xy = 2.07143. Further reduction to reduced
1 0 0 0 2.07143

echelon form produces 8 é 2 8 7‘3?257 , with the solution X
0 0 0 1 0.21429

in the final column. For this problem,

1 0 3 2 1 0 0 0

~lo 1 12 5 12 1 o 0

U=1g o0 -7 -7|@®dL=1,7 1 1 0

0 0 0 10 0 0 0.4286 1

and it is easy to show that X = v L 1.
1 1 0 0 2
; 0 0 2 1 5 . .
(b) Here (AiB) = 1 0 1 0 9 and interchanging rows 2 and

0O 0 1.1 O

3 makes things easier. After several elementary operations, you
arrive at the following echelon and reduced echelon forms:

11 0 0 2 1 0 0 0 4

01 -1 0 -7 01 0 0 -2

0 0 1 0.5 25240 0 1 0 5

00 0 1 -5 0 0 0 1 -5
13
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4
and in either case it is easily established that X = [_g . For
-5
1 1 0 0 1 0 0 (0]
this example, U = 8 é _; ? , L = é _é ? 8 and,
0 0 0 0.5 0 0 0.5 1
4
indeed, X = UT'L7'B = [7Z].
-5
2.27. The equations in Problem 1.12 are
X+ Xy = 10

—3x1 + 2x2 = 16
If you try to use Gauss-Seidel on the equations in this order you
will have
10

1
X
1

Xl-
X2=

and, for example, starting from x°= [8], the iterations will

explode toward negative infinity. However, if you write the
original equations in the opposite order, then you will use
Gauss-Seidel on the system

Xy = (2/3)x2 - (16/3)
+ 10

XX X

27 1
and the iterations converge nicely from XO = [g] to the (correct)

. _ 4
solution X = [14].

14
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Chapter 3
3.1, (a) £(xy) = 4x§ + 2 + 15 Fxg + Bx) = 4(xy + ax)2 4

2(xo + Ax) + 1. Therefore Ay = f(xo + Ax) - f(xo) = 4xg + BXOAx +
4(Ax)2 + 2xo + 20x + 1 - 4xg - 2x0 - 1 and so Ay/Ax = 8x0 + 4Ax +
2. Taking the limit, as Ax » 0, and dropping the subscript, since
this is valid for any particular Xqr dy/dx = 8x + 2. Exactly the

same approach will answer parts (b) and (c).

3.2. (a) f'(x) = 6x + 12 = 0, so x* = -2. Since f'(-3) = -6
and f' (1) = 6, x* constitutes a minimum point. (b) f’(x) = 6x -
12 = 0, so x* = 2. Here f'(1) = -6 and £’ (3) = 6, so x*
represents a minimum. (c) f’'(x) = -6x + 12 = 0 leads to x<* = 2.
Now 7' (1) = 6 and ' (3) = -6, so x* is a maximum point.

3.3. (a) v - 430 = 72(x - 10), or 72x - y = 290. (b) yv + 2
=0, ory = -2. (c)y - 10 = -12(x - 4), or 12x + ¥y = 58.

3.4. (a) f' = 6x2 + 6x - 12 = 0 leads to x* = -2 or x** = 1.
f'' = 12x + 6, so f"(x*) <0 (x* is a relative maximum) and

f"(x**) > 0 (x** is a relative minimum). These extrema are
relative, not absolute, because the function continues upward
toward + ® to the right of x** and downward toward - ® to the left

of x*.

(b) Setting f’ (x) = 3x%(4x - 1) = 0 yields x* = 0 and
x** - 0.25. f"(x*) = 0; taking higher order derivatives,
f"'(x*) - -6 and hence x" represents a point of inflection.
f"(x**) = 0, so x** represents a minimum. So f(x) has no finite
maximum but it has an absolute minimum at x**,

(c) Setting f’' (x) = 3x2 = 0 yields x* = 0; since f"(x*)
= 0, we find f”'(x*) = 6, so x* is a point of inflection.

(d) £’ (x) = 0 leads to x* = -2, where f"(x*) = 6 and so

x* is an absolute minimum. The function extends upward infinitely
far on both sides of x*.
(e) ' (x) = 0 leads to x* = 0 and x** = 0.75. '’ (x*) <

*%

0 (x* is a maximum) and f"(x**) > 0 (x is a minimum). Both are

relative, not absolute, since the function extends downward to the
left of x* and upward to the right of x**

(£) f' (x) = 4x3 - 36x = 4x(x? - 9) = 0, leading to x* =

15
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-3, x** - 0 and x*** = 3. Here f'’(x) = 12x% - 36, so f''(x*) >

0, £ (x**) <0, and 7'’ (x***) > 0, meaning that x* and x*** are
minima and x** is a maximum point. Since f(x*) = f(x***) = -66,
these represent "absolute but equal" minima while f(x**) = 15
represents a relative maximum. The function looks like a
"rounded" W.

3.5. (a) Here f'(x) = 0 is a fifth degree equation with

three real roots--x* = -1, x** - 0.5 and x*** = 2. f"(x*) =0
and f”'(x*) < 0 (a point of inflection), f"(x**) > 0 (a minimum
point), and f”(x***) = 0 and f”’(x***) > 0 (another inflection

point); x** is a global minimum.

(b) Here f*(x) = 0 is a fourth degree equation, again

*% kk%

with three real roots—-x* = -3, x = 0, and x = 2. Now

7' (x*) = 0 and f' '’ (x*) > 0 (point of inflection), f'’ (x**) < 0

k%

(a maximum) and Ff'’ (x ) > 0 (a minimum). Neither the maximum

nor minimum point are absolute extrema.

3.6. (a) x* = 0.5. (b) x] = x; = 20.

3.7. (a) X* = [_8:2223] is a minimum point. (b) x* = [2] is
a minimum point. (c) x* = [_;] is neither a maximum nor a
minimum. (d) x* = [3] is a maximum point. (e) Here Vf = [—6x§ +
6x2, 6x1 - 2x2 - 4]1’, so Vf = 0 is a set of nonlinear equations;
the solutions are X* = [i] and x** = [Z]; x* is neither a maximum

- xk . .
nor a minimum; X is a maximum point.

3.8. From z = xy/(x + ¥y), 82/8x = yz/(x + y)z and éz/8y =

x2/(x + v)2, so x(d2/0x) + v(82/8y) = xy> + x%y/(x + v)Z = (V) (¥

%)/ + )2 = xy/(x 4+ y) = 2.
3.9. There should be 150 passengers for R* = $1125.

3.10. (a) x* = [20]. (b) Since x., contributes only

0 2
positively to the cost function that is to be minimized, it should
remain as small as possible, namely at zero. (Negative total
output generally has no meaning.) Examine the cost function at
its two endpoints to xl—-O and 12; f(0, 0) = 500 and F(12, 0) =

16
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164, so set X, 12 when there is a restriction that xq cannot

exceed 12.

* _ [26.67
3.11. X = [ 6.67]'

3.12. (a) It was established in Problem 3.11 that there is
only one stationary point, which is a minimum. So there is no
finite maximum to the function. (b) If x1 = 12,2this becomes a
function of one variable only, namely f(xz) = 4x2- 24x2 + 164.
Setting f’(xz) = 0 leads to x; = 3, but this represents a minimum
point. Clearly, for larger and larger values of X5 f(xz)
increases without limit. (c) Since f(xz) has a minimum at Xy = 3,
examine the value of the function at the relevant endpoints which
lie on either side of Xy = 3, namely at Xy = 0 and at Xy = 5. Inm
the former case, f(x2) = 164 and in the latter case, f(xz) = 144,
so it is best to set x, = 0.

3.13. Here f’'(x) = -4x + 90 = 0 leads to x* = 22.5--but
f"(x*) = -4, so x* represents a maximum point. Therefore,
examine f(x) = —2x2 + 90x + 600 at the two endpoints, 0 and 50.

Since f(0) = 600 and f(50) = 100, select x = 50. If the limits on
x are (0 £ x < 40), and since f(40) = 1000, the answer is x = 0.
3.14. Here is one solution: 2x3 - 3x2 - 12x + 100.
3.15. This is a function that should be drawn with a good
computer graphics program. First-order conditions lead to x* =

[8], and to (XI*)2 + (x;*)2 = 1, the set of values of xq and xz on

a circle, centered at the origin, with radius 1. x* indicates a
minimum point and points on the circle are (relative) maxima.
3.16. t* = 32.7963.
3.17. This problem should only be done if you have access to
good computer software for finding derivatives and doing algebra.

17
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Chapter 4
4.1. There is no finite maximum.
* [ 3/31
4.2. X = _18/31]'
* [20/14
4.3. X = |30/14| represents a maximum.
[10/14
* [117 . L .
4.4. X = 12] is a minimum point.
* [11/3
4.5. X = ]10/3| is a minimum.
[ 8
* [230/150 1.533
4.6. X = |334/150] = |2.227} is a maximum.
| 38/150 0.253
=_ [0 x _ 3/31
4.7. (a) X' = [0]. (b) X" = [18/31]‘
* 44 . . *
4.8. (a) X = E (b) There is a local maximum at X from
(a) but f(X) has no finite maximum--for example, let X, *-® and
X2 = 0_

4.9. The solution is the same as for Problem 4.3.

4.10. The solution is the same as for Problem 4.6.

4.11. (a) There is no finite maximum; as x » -0, the
function grows ever larger and the constraint is met. (b) There
is no finite maximum; as x +» ®, f(x) grows every larger and the
constraint is met. (c) Same as (b). (d) At x = -3 there is a
local minimum. (e) At x = 3 there is a local minimum. (f) The
minimum occurs at the left-hand endpoint, namely at x = 4.

* _ |25
saz. x* =[]
*

4.13. (a) x* = [10 10 10]'. (b) X" = [10 10 10]'.
4.14. The problem is to minimize 2x1x2 + 2x1x3 + 2x2x3

. 5 . * _ % _ % _ _1/3
subject to x1x2x3 = ¢, which leads to xl = x2 = x3 = ¢ .
4.15. A* = r* = a* - c/(4 + 7).
4.16. x’l" = x; = 1.414k.

18
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Chapter 5

5.1. This is an exploratory problem that should be done on a
computer, using either root finding software or a small program
that you write.

5.2. (a) Newton-Raphson from x0 = 2 finds x1 = 1.25, x2 =

1.025, x3 = 1.00030 and x4 = 1.00000 before stopping. (b) The

secant method, from xo = 2 and xl = 1.25, finds x2 = 1.0769, x3 =

1.0083, x* = 1.0003 and x® = 1.0000. (c) Modified Newton takes 15
iterations. (d) Bisection requires a pair of initial points that
bracket a root. Using xo = 2 and x1 = 0.5, x = 1.0000 is reached
in 18 iterations; if you use xo = 2 and x1 = -3, x = -1.0000 is
reached in 21 iterations.

5.3. (a) Newton-Raphson and Modified Newton fail because of
the division by zero problem. The secant and bisection methods
are unaffected; for bisection, the second of the two initial
points must bracket a root.

(b) For Newton-Raphson, you end up at x = -1 in about 10
iterations. The secant method leads you to -1 or +1 depending on
what you use for xl, in conjunction with xo = -0.01. For example,
with xl = 2, you get to x = +1, with xl = -2, you end up at x =
-1. Modified Newton doesn't work; it explodes toward x = +w.

. . . : s . . 0
Bisection, again, requires an initial bracketing pair. From x =

-0.01 and x1 = 2, you reach x = 1 in about 17 iterations.

5.4. Since there is no real value for which x2 + 2 =0, all
of the iterative methods simply fail to converge.

5.5. All of the iterative methods will find the solution at
x = 0. (Modified Newton takes hundreds of iterations.)

5.6. For n = 2, the square of uncertainty with an area that
is 10% of that of the unit square has sides of length 0.316 [which
is (0.1)(1/2)]. For n = 3, a volume that is 10% of that of the
unit cube has sides of length 0.4642 [= (0.1)(1/3)]. For n = 10
and n = 20, the corresponding "sides" have length 0.7943 and
0.8913, respectively [these are (0.1)(1/10) and (0.1)(1/20)].
Remember that in each case, the length of the sides lies between 0
and 1, so by the time n = 20, the range of uncertainty for each xg

is almost 90% of its entire length.

19
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5.7. The two solutions are, as indicated in the question, xl

_ |-1.6794 2 _ [2.6794 .
= [ 4.6794] and X© = [0.3206]' but of course the exact solution

that you get will vary with the stopping criterion that you use.
5.8. Using a stopping criterion that the left hand sides of

both equations should be within 10_5 of zero, the (only) solution

is x - [3-2424
= |5.2297}"

5.9. No solution.

5.10 (a) With the equations ordered (3, 1, 2, 4), the
solutions for the unknowns are x) = 9 - Xq, Xy = 2 - Xy, Xg = (5 -
x4)/2, X, = “X3- Convergence is fairly fast (on the order of 17
iterations) from a wide variety of starting points, and for the

stopping criterion max [Ifi(xk)l] < 10_4. The only difference in

i

the equation ordering (3, 1, 4, 2) is that now X3 = =%, and X4 =
5 - 2x3,
that are very very close to the actual solution, X = [4 -2 5 -5]".

yet Gauss-Seidel now converges only from starting points

(b) Of the 8 possible equation orderings that are
meaningful, only for (1, 3, 2, 4) does Gauss-Seidel converge, for
a wide variety of starting points and the usual stopping

criterion.
k _ |1 k, _ 8
5.11. At X" = [1], VA(X7) = [12].

(a) Forward difference approximations.

a f(x]f+ot, x2) f(xl, x}2:+ot) f(xk) Approximation to vk
0.2 -26.48 -25.64 -28 [lz:g]

0.1 -27.22 -26.81 -28 [11:3]

0.01 -27.9202 -27.8801  -28 [lz:gg]
0.001  -27.9920 -27.9880  -28 [13]

(b) Backward difference approximations.

o foEa, x,) £ixy, xa) #(x*)  Approximation to V%
0.2 -29.68 -30.44 28 [lgzg]

0.1 -28.82 -29.21 -28 [lg:f]

20
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8.02
0.01 -28.0802 -28.1201 -28 [12'01]
0.001 -28.0080 -28.0120 -28 [13]

(c) Central difference approximations. The central
difference method, in this example, gets it right every time.

o FOKra, xp)-fea, %001 1 (¢, xhra)-fF (x|, x3-a)] Approx.

to Vk
.
0.2 3.2 4.8 15)
o
0.1 1.6 2.4 1)
0.01 0.16 0.24 [ 8]
) ) ) 13
0.001 0.016 0.024 [ 8]
) i ) it

5.12. For this problem, H = gk = [_g _g].

(a) The forward difference estimate of htl is given by
(X + 2a1)) - 2/ (¥ + a1}) + F(x%)1/6®. 1f you work this out
for « = 0.2, 0.1, 0.01 and 0.001, you will generate the exact
value, -4, every time. (You need to carry twice as many places to
the right of the decimal as there are in a; for example, for a =
0.001 you need six places to the right of the decimal point.) The
forward difference estimate of hgz would be found in exactly the
same way, with subscripts 1 replaced by 2. Backward difference
estimates could be found similarly, subtracting rather than adding
A,

The forward difference estimate of h?z is given by [f(xk +

aI, + al,) - FRE 4 a1)) - £(XF 4 aI,) + 7(x¥)1/0%. BAgain, for a
= 0.2, 0.1, 0.01 and 0.001 you will get exactly 0, which is h12'

The forward difference estimate for h21 would also be 0 for all
values of a. Again, backward difference estimates result if a is
subtracted rather than added in all steps.

(b) If you work out the details of the central
difference method, you will also find that the estimate is exactly
right for all elements of H. When H is made up of constants, as

21

o



answers.gxd 8/27/99 1:26 PM Page 22 $

here, the estimates provided by forward difference methods and
central difference methods (and backward difference methods,
also), are identical and exactly correct.

5.13. (a) At X* = [i], vr(xky = [Ig].

(i) Forward difference approximations.

a f(x?+a, x2) f(xl, x§+a) f(xk) Approximation to Vk
-4.56]
0.2 2.088 6.184 3 [15_92_
-4.03]
0.01 2.9597 3.131403 3 [13.14_
-4.003]
0.001 2.995997 3.013014 3 [13_014-

(ii) Backward difference approximations.

a f(x?—a, x2) f(xl, xg—a) f(xk) Approximation to vk
-3.36
0.2 3.672 0.936 3 [10.32]
-3.97
0.01 3.039699 2.871397 3 [12.86]
-3.997
0.001 3.003997 2.987014 3 [12.986]

(iii) Central difference approximations.

o [fOKra, xp)-f(F-a, x,)1 [£(x), xhra)-F(x|, x3-a)] Approx.

to V¥

o[22
0.01 ~0.079999 0.260006 [Ig]
0.001 ~0.007999 0.026000 [Ig]

(b) At x¥ = [i], HE = [:g 52]. As in Problem 5.11,
the forward difference estimate of h?l is given by [f(xk + 2aIl) -
27 (X" + 1)) + #(x¥)1/0% and the estimate of h?z is given by [f(X"

+al; +al,) - Fx% v 1)) - £(F 4 a1y) #(x¥)1/0%. There are

1
similar expressions for hgl and hgz. Backward and central
difference estimates can also easily be found.

22
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For h?l'
a  F&S 4 201))  2(xS v o1 F(x) Approx. to A%,
0.2 0.984 4.176 3 -4.8
0.01 2.9188 5.9194 3 -6
0.001 2.991988 5.991994 3 -6
For hTZ’
o f(xk + aIl + aIz) f(xk + aIl) f(xk + aIZ) f(xk) Approx.
to h?z
0.2 5.184 2.088 6.184 3 -2.2
0.01 3.090903 2.9597 3.131403 3 -2
0.001 3.009009 2.995997 3.013014 3 -2

Results would be similar for hgl and h§2' and, again, backward and
central difference estimates could also be found..

5.14. Straightforward substitution of f’ (x) = [f(>x* + a) -
FO®) 1700 ana £ K 4 ) = FOR 4 B+ o) - £F + B)1/a into
£ 08y = 1 F + B) - £ (x¥)1/8 yields the result. When o = 0.1,
A = 0.2 and xX = 2, the estimate is (3.29 - 2.84 - 2.41 + 2)/0.02
= 2, which is exactly right; in this example f’’ (x) = 2 everywhere.

23
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Chapter 6
6.1. Io = (0, xn), with midpoint Xq- I1 = (0, X, * (6/2)) =
(0.5)10 + (8/2). 12 = (0.5)11 + (6/2), and substituting I1 gives
12 = (0.5)21% + (0.5)(6/2) + (6/2). The results for I3, 1%, ...,

Ik follow directly.

6.2. This is an exploratory question. Continuing the

simplex geometry will take you ever closer to the minimum at x*

o)

6.3. In all cases, x = 0 represents a local maximum and x

+ 3 are local minima.

3] is the maximum point. A simple gradient
approach——xk+ = xk + (0.25)Vk——from x0 = 0, leads to the solution
in 21 iterations, using a stopping criterion that both elements of
k 5

v

< 1077,
6.5. (a) x* = [—8'2223] is the minimum point. Using the

*

6.4. X = [
1

gradient approach in (6-1) leads to this solution in 17

iterations, from XO 0 and with a stopping criterion that both

elements in VK < 10
(b) x* =

and with the same stopping criterion as in (a), leads to x* in 24

5.
2 is the minimum. Using (6-1), from xo =0
iterations.

If you are using a program which easily allows you to change
o in both parts of this problem, you might do so and observe how
sensitive the iterative procedure is to the choice of a. That is
why most gradient-like methods use a step size (a) that varies
with each step.

6.6. (a) For a maximization problem for a function of one
variable, (6-1) becomes xk+1 = xk + Axk = xk + akf'(xk), where
f’(xk) plays the role of Vk
the iterative scheme works out to be

R R TV AR NS
For a minimization problem for f(x), the steps are

KL _ K 6B 15 )

(b) The iterative steps are xk+1 = xk + (1/6)(—6xk + 6).

in the multivariable case in (6-1) and

24

o



answers.gxd

8/27/99 1:27 PM Page 25 j\%

You will get to x* = 1 in one iteration from any of the starting

points, since the quadratic approximation given by a second-order
Taylor Series is exact for a quadratic f(x) such as here.
(c) This is just the "negative" of the problem in (b).

Since this is a minimization problem, movement follows xk+1 = xk +

o¥[-f" (x¥)] ana o = -1/6, so x**1 = xX + (1/6)(6x* - 6) and, as
in (c), you will get to x* = 1 in one iteration from any of the
starting points.

6.7. The parallel to Newton's method in (6-7), for a
function of one variable, is

LK e oy 6

for both a maximization problem and a minimization problem.
Cauchy and Newton are the same for the f(x) case.

6.8. (a) From Xk+1 = xk + Ck, using a second-order Taylor
Series approximation,
ar(x%) = @y - s x%) = (9F1 1c¥1 + (0.5)1c® 1 H#*IC)
= aar (x¥)/ock = ¥ + H¥CK = o
leads to
ck - ) leM

which is exactly Newton.
Second-order conditions depend on azAf(xk)/(ack)z = Hk, SO we
need Hk negative definite for a maximum and positive definite for

a minimum.

(b) Now x¥*1 _ ¥ - Gax¥, so the Taylor Series
approximation is
af (X%l o pxFhy - p M)
= [v%1 [aax®] + (0.5)[aax¥]’ H¥[aaxK]
From
aas(x¥)/aaxk = av¥ + a2u®[ax®] = o
we have
k — k,.-1 .k
ax® = - (1/a) (%)%

Second-order conditions come from dzAf(xk)/(dAxk)2 = (ak)ZHk. so,

again Hk must be positive definite for a minimum and negative
definite for a maximum.
6.9. (a) Straightforward substitution of xk and gk into

(6-32) leads to Bk+1 as shown. This is a positive definite

25
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matrix; all leading principal minors are positive.
(b) Substitution into (6-32) again leads to the B

shown in the problem. While the first two leading principal
k+1

k+1

minors are positive, |B | = -1, so the matrix is not positive
definite.

6.10. If you begin by letting (gk)'Bkgk = s (a scalar) and
(xk)’gk = t (another scalar), the algebra is simpler. Then expand
the two expressions, in (6-41) and (6-42), removing parentheses
and carrying out the multiplications, and remember that Bk is
symmetric, so Bk = (Bk)'. The first two terms in both expressions
are Bk + xk(xk)’/t. The three remaining terms in (6-41) are
matched by terms in (6-42), in a different order. 1In addition,

(6-42) contains the term [Bkgk(gk)'Bk/s], both added and
subtracted.
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Chapter 7

[0 0 3.6]', S* = [8.4 0]’ and f(X*) = 54.

* 0 * 0 *
7.2. X = [12/7], S = [5/7] and f(X) = 13 5/7.

7.1. X

1]

* 0 * _ [4 *. _
7.3. X [1‘5], 8 = [0] and f(X") = 13.5.
*

7.4. X [0 5 10 01, s* = 0 and F(x*) = 140.
7.5. The feasible region for this problem is unbounded;

there is no finite maximum.
7.6. This is an exploratory problem. The optimal solutions
to all parts of the problem should appear after three pivots.
7.7. (a) Minimize 12y1 + 18y2 subject to vy o+ 2y2 = 3, vyt
0
3
A* = 54, Recalling that x* [0 O 3.6]" and s* = [8.4 0], it
is obvious by inspection that Y*es* = 0 and x*er* = 0.

*

v, 22, vy, +5,215andY20. Y = [ ], ™ = [3 1 0]’ and

- . <
(b) Maximize 12y1 + Y, subject to Zyl + 2y2 < 6, 7y1 +

v,<8andyY2z0. Y= [867], ™ - [2667] and A* = 13 5/7. Since
x* 0 and s* = [0 |, v*-s* = 0 and x*-T* = 0
= l12/7] @™ = |Is/7}" = U an = Y-
(c) Maximize 2y, + 6y2 subject to 3y, + v, £ 5, 4y, + 1y,
< 9 and Y =2 0. Y = [2 25] = [2 75] and A* - 13.5. Since X*

0 and X oT* = 0.

0 * _ |4 * ok
{1.5] and S = [0], Y

(d) Minimize 10y1 + 30y2 subject to Zyl =1, 2y2 = 8, vy

+2y,2 10, 5y, 2 9 and Y 2 0. Y' = [ﬁ], ™ =13 0 0 111';
since X* = [0 5 10 0]’, 8* = 0, Y*-8* = 0 and x*-7* = 0.

(e) Minimize 6y1 + 16y2 subject to ¥y - Yy =21, v, +
2y2 2 2 and Y 2 0. The feasible region for this problem is empty.
This follows from the fact that the primal is unbounded.

7.8. The solution space geometry for the two primal problems
will be the same, so the optimal solution to the primal is
unchanged. Therefore the optimal value of the dual objective
function is the same for both problems, and the same dual
variables will be positive and zero in both dual problems. The
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primal problem whose i-th constraint is k times the i-th
constraint of the other will therefore have an associated dual
variable that is (1/k)-th as large, provided it is nonzero in the
optimal solution. (If it is zero, it will remain zero.) You can
easily verify this for a numerical example.

7.9. (a) The solution space geometry for the primal will be
unchanged and so the optimal values of the primal variables would
not be affected at all. (b) In the solution-space picture for the
dual, the right-hand sides of all constraints would be (1/10)-th
as large; hence optimal values of the dual variables would also be
(1/10)-th as large. You can easily verify this also in the same
numerical example.

7.10. This is a derivation question. Given the initial
pivot column (¢) and row (k), it requires that you go through the
algebra of first expressing x, as a linear function of all the
other x's along with Sk This generates the first two rules in
Table 7.6. Using this result for X, in any other row of the
original simplex table will produce the last two results in Table
7.6.

7.11. Consider a small general problem.

Maximize plxl + p2x2

1
o

i <
subject to allxl + alzxz

1A
o

+ a

%21%1 222 2

and X 2 0. Converting to augmented form
Maximize plxl + p2x2 + Os1 + 052
allxl + a12x2 + s1 = bl
a21x1 + a22x2 + 52 = b2
The dual constraints associated with the coefficient columns for
the slack variables will be
lyl + Oyz 0
> . i >
Oyl + 1y2 Z 0; that is v, 2 0

v
v

0; that is Y4

7.12. By simply observing that the first dual constraint is
—5y1 - y2 2 2, which is clearly impossible for Y =2 0, you can see
that the dual problem has no feasible solution. If you try to
solve the primal problem, you will find the same signal as in
Problem 7.5 that the primal feasible region is unbounded.
7.13. 140 Clippers, 150 Cruisers, M* = 430,000.
28
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7.14. 100 Clippers, 200 Cruisers, n* = 300, 000.
7.15. (a) 40 in A, 18 in B, N* = 24,600. (b) y] = 7; the
range over which this marginal figure is valid is 1200 = bl <

3200. Therefore an additional 40 person-hours would be worth
$280. (c) Since y; = 4.5 and y; = 0, it should be made available
in region A.

7.16. (a) No. An optimal solution is a basic feasible
solution, and so at most two of the three unknowns will be
nonzero.

(b) x* = [30 15 0]’, 01* = 24,000.

(c) There is no conflict. The optimal solution in (b)
uses 810 pounds of recycled plastic.

(d) Decreased by 555.56, the element under x3 in the top
row of the optimal simplex table.

(e) In the optimal solution, yz = 33.33, with a range
180 = bz = 450. So the strike would cost 333.33 [= (360 -
350)y;]. If b2 went down to 150, that is below the range of
validity for v).

(f) The range over which changes in the value of Py will
not alter the current optimal solution has an upper limit of
755.56, so increases to 500 or to 750 would not change x*.

7.17. (a) The problem is to maximize XAJ + xAK’ subject to
upper limit constraints on each of the segments and also on
constraints assuring that everything that flows into a pumping
station must flow out from it and subject also to nonnegativity of

all the flows. The upper limits are:

< < < <
Xpy = 20, Xak = 12, Xy 16, g = 12,
< < < <
XKM < 8, XMB < 32, XJM < 24, Xer S 28
The inflow = outflow constraints are:
a3 = oL Y ¥omr Ak T kL Y *mw Xon Y kL T *wB’ ¥mm Y oM T *mB
There are multiple optima to this problem. One optimal solution
is
* * * *
Xpg = 200 xpg = 12, x5y = 8, x;g = 12,
* * * *
XgM = 8, XvB = 20, XM = 12, xgr = 4

so the maximum amount that can be shipped is 32 barrels.
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(b) Since the two pipelines out of A are used to
capacity in the optimal solution, the increase in capacity would
be needed there. From the optimal solution, the dual variables on
the lines from A to J and from A to K are both 1; the right-hand
side ranges are 8 to 32 for the capacity on AJ and 8 to 20 for the
capacity on AK. So you could put all 5 units of new capacity on
either AJ or AK. 1In either case, total flow would increase by 5,
to 37.

(c) The problem now is to minimize

20xAJ
subject to the same inflow = outflow constraints at each pumping

+ 12xAK + 16xJL + 12xLB + 8XKM + 32xMB + 24xJM + 28xKL

station along with an upper limit of one on the flow along each

line and the restriction that either x or x must be 1. The

AJ AK
new capacity constraints are simply
< < < <
Xag = Looxqg = 1 x5, =1, x g =1,
< < < <
XM = 1, v = 1, Xy = 1, Xpr = 1
To restrict the unit flow to either AJ or AK, add the constraint
. . : * _  *x %
XAJ + XAK = 1. The optimal solution is xAJ = XJL = xLB =1, for a
total cost of 48.
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Chapter 8

6 2

8.1. The optimal dbasic solutions are X* = 2 and x** = [8];

in both cases, n* = 66. All nonbasic solutions on the line

connecting x* and X** are also equally optimal. (Geometrically,

the objective function in this problem is parallel to the third

constraint.)

8.2. The optimal solution to the primal problem is
*

degenerate; X° = [6 3 0]’. The zero in the optimal solution

indicates that there was more than one "smallest" ratio in the

previous pivot column. Choosing the first as the pivot element,

x*

results, along with Y* = [10/7 9/7 0]'; choosing the second

as the pivot, the same x* results, along with Y* = [0 1/3
10/371' .

* _ [6.872 * _
8.3. x* - [7.435]' n* = 21.179.
8.4. x* = [g] n* = 64.

* *

8.5. X [0 3 31’, 1" = 51.
8.6. The problem is to

Maximize 100xA + 130xB + 120xC + 125xD + 110xE + l35xF
subject to
15000xA + 15000xB + 12000><C +
18000xD + 19000><E + 17000xF < 40,000

and, for noncontiguity,

x o+ x_, <1, x, +x_ =<1,
+

x, <1

x + X D F -

<
C E

and, for all x, 0 £ x £ 1 and integer. The optimal solution is x;

; = 1 and all other variables are zero; the optimal value of

the objective function is 265.

8.7. The problem can be formulated as
Maximize 6000xA + 5000xB

subject to 2000xA + 3000xB < 4000
xA < 1

<
XB < 1

and X 2 0 and integer

Using either Gomory or branch and bound, you will find x* = [é].
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8.8. Here xIl = 15, X:Z =0, x = 15, x

13
x;3 = 0; minimal costs are 855.
8.9. This problem has multiple optima. One solution is XIZ

* * * * _

* * *
=4, X7, = 10, x1¢0 = 4, x5y = 8, X5, =2, X33 =6, X35 =T, X3¢ =
6, and all other variables are zero; minimal costs are 54.

8.10. Optimal assignments are Truck 1 to D, Truck 2 to C,
Truck 3 to B and Truck 4 to A; minimized costs are 4300.

8.11. The optimal assignment is W1 to L5, W2 to L3, w3 gets
no assignment, w4 to L4, w5 to Ll' Wr to LZ’ for a total cost of
210.

8.12. (a) v] = -3. (b) ul = +1.

* * * *
8.13. xy5 =6, X7, =8, x50 =4, X5, =8, X33 =
* *

x25 =7, x36 = 6; minimized cost is 60.

8.14. Using OWIj to indicate the optimal shipment from
origin i to warehouse j and WD;k for the optimal shipment from

*

warehouse j to destination k, the optimal solution is X;Z = 6, X114

* *
15 36

WD;6 = 4; total cost is now 36.75.
8.15. (a) The optimal shipping matrix is

*
22

*
21

*

= 10, 25

=2,x;3=6,x =6, ow*_ - 17, woi =8, woi_ =5,

Region 1 Region 2
1 2 3 1 2
Region 1 100
1 2 100 100
Region 1 150
2 2 100 50
3 100

and minimized total shipping costs = 29,000.
(b) The optimal shipments matrix is the same; costs are
now 39,000.

(c) The optimal shipments matrix is now
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Region 1 Region 2
1 2 3 1 2
Region 1 100
1 2 | 100 100
Region 50 50 50
2 2 150
3 50 50

with a total cost of 30,000.
(d) The optimal shipments matrix is now

Region 1 Region 2
1 2 3 1 2
Region 1 100
! 2 | 100 100
Region 1 100 50
2 2 150
3 100

with total shipping costs of 30,500.
(e) Region 1, City 2; the increase would be 100.
(f) Region 1, Plant 1; the decrease would be 70.

8.16. (a) Plants 1 and 3 are both cheapest at location B;
Locations A and C are both cheapest for plant 2. (b) The optimal
assignment is: 1 to B, 2 to C and 3 to A; total cost = 12. (c) In
this case, 3 should also go to B; total cost = 10. (d) Now the
optimal assignment is 1 to D, 2 to C, 3 to B; total cost = 9.

8.17. This is an exploratory question. Your results will
depend on the additional objective functions that you formulate
and the trade-off coefficients that you use.

8.18. This also is an exploratory problem.

8.19. This also is an exploratory problem.
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Chapter 9

9.1. After seven pivots, X* = [10,000 0 0]°, 0* = 10,000.

Notice that if you used, as the criterion for pivot column
selection, the greatest total increase in the objective function
(not the greatest unit increase, which is what is used in the
text), you would choose column 1 for the initial pivot, and that
would lead directly to the optimal solution.

9.2. The problem is

Maximize X+ 10x2 + 100x3 + 1000x4

subject to  x, + 20x, + 200x5 + 2000x, < 10°
Xy *+ 20x3 + 200x4 = 104
Xy + 20x4 =< 102
X, = 10O
and X 2 0

The procedure is identical to that in Problem 9.1, only now it
will take 15 rather than seven pivots.

2,0 ... 0
9.3. (ap= |°? ® |, where 2, > 0. soDis
0 0 ...d_

positive definite if and only if all leading principal minors are
positive [this is (1-40) in Chapter 1]. Here IDll = d11 > 0; IDZI

= d11d22 > 0; |D3t = d11d22d33 > 0. Continuing, using the fourth

row along which to evaluate |D4I, ID4I =0+0+0 + d44£D3i > 0,

cees 1D =0+ 04+ ...+ 0+4d D 41 >0.
a;l e a1n
(b) Here A = i i {, withm < n and p(A) = m.
a eee &
ml mn

Using Ai for the i-th column of A and _.A for the j-th row of A,
(GRIA )] (AR ), ... (A ),
(LA)(A"), (LR)(A'), ... (LA)(A")
AR’ = 2 % 1 2 ; 2 2 i m
(R (A); (GRIR ), .. (LA)(R ),
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a

31
(i) Notice that (iA) = [ail, ey ain], (A )j= ; ’ (iA)(A )j =
jn
(ailajl + ... ainajn); also (jA) = [ajl, cees ajn], (A" )=
“i1
B , and (jA)(A )i = (ajlai1 + ... + ajnain) = (iA)(A )j’ so AA
in

is symmetric. (ii) If p(A) = m, the rows of A are linearly
independent. Suppose the opposite, that lA = k[ZA]. Then, for
example, the second leading principal minor of AA’' =
[k(zA)k(A’)Z][(ZA)(A')Z] - [k(zA)(A‘)Z]Z, which is easily shown to
be equal to zero, violating the requirement that all principal
minors be positive for a positive definite matrix.

d 0 ... 0
“11 *+* %l ot o [|F12 7 fm
(c) ADA’ = i i i ; i Pl
Qa ce. @ i ‘. a ce. @&
ml mn 0o 0 ... dnn 1n mn

The argument here is the same as in (b), except that now there is
also a set of djj terms involved. But since all djj > 0, the
results are not changed.
(d) Here is an example in which m = 3, n = 5 and o(A) =
1 2 3 4 5 55 110 80
2<m: A=1]2 4 6 8 10|. Here AA’ = |110 220 160}, which
8 7 6 5 4 80 160 190
is symmetric but also singular; o(AA’) = 2 (for example, row 2 is

twice row 1).

* * *

9.4. a* =" =¥ = (2/3)s.

9.5. Case 1. R = 2.3094 and r = 1.1547 so R/r = 2. A_ =
ar? - 4.1888, A, = 6.9282, so A_/A_ = 0.6046. Case 2. R = 2.5515
and r = 0.8165 so R/r = 3.1250. A_ = 2.0944, A_ = 4.8990, so

AC/At = 0.4275. Case 3 R = 3.0505 and r = 0.7939 so R/r =
3.8426. Ac = 1.9801, At = 4.7634, so AC/At = 0.4157.

(A" )(AA") = |2]{[1 2 1]|2}|} = |2/6], so
1

9.6. (a) Ap

1 1/6
~0 -1 10/6 ~0
X" = (A’)(AA’) B = |20/6]. The distance of this X to the origin
10/6
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is [(10/6)2 + (20/6)% + (10/6)%1%9°° = 4.08. From each of the

0 0 10
to the origin are simply 10, 5 and 10, respectively. From a

- 10 0 0
endpoints of the constraint, x° = [ 0], [5] or [ O], the distances

- 3
randomly chosen alternative point on the constraint, xo = [1], the
5

distance to the origin is 5.92. You can try alternative points on
the constraint; they will all be more than 4.08 units away from
the origin.

(b) The constraint X o+ Xy 4 Xg = 12 is a regular

-1 1 1] _, [1/3
simplex. Here AR = (A’ )(ARA’) = |11]{[1 1 1]1}1}} = |1/3| and
1 1 [1/3

iO - (A')(AA')_lB

4 -
[4]. The distance from xo to any of the three
4

[12 01 0
vertices where the simplex meets an axis, at 0}, |12] or of,
| 0 0] 12
is 9.8. Similarly, the distance from iO to the three sides of the
simplex (on the x, = 0, X, = 0 or Xgq = 0 planes) is 4.9.

Therefore, x° is indeed at the center of the constraint.

m m

™11
™21
31

13

12
. 2
22 Mp3|. the general result is (233)

32 ™33

9.7. For M = m

m
- (£ )2 - (£ )2 It is straightforward algebra, best done
33 31 32’ - g g ’

. _ 0.5 _
on computer software, to find 821 = m21/(m11) , 622 =

0.5 _

=M

making all the substitutions, (533)2 = IM3I/|M2|-
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Chapter 10
10.1. [0.5 1.5 0]'.

* 3/31
10.2. X" = [18/31]'

* _ |0
0.3, 2 - [J].

>
i

_ 2 2 2 _ _
10.4. (a) L(X, Y) = =Xy - xz* x3 yl(x1 + X, 2) y2(2x1
+ 3x2 - 12). From Problem 10.1, X* = [0.5 1.5 0]’; also from
those results, using v's instead of A's, we have v* = [3 0]1'.

(b) L(X, ¥) = -6x} - 5x2 - y(-x; - 5%, + 3). X* =

[lgjgi] and y* = 36/31.
(c) L(X, Y) = -6x
and y* = 0.
10.5. (a) Problem 7-1. X* = [0 0 3.6]', s* = [8.4 01,
y* = [0 3]’ and ™ = [-3 -1 0]’. For all of these problems
with linear objective functions, Vf(x*) = Vf(X). The constraints

2 2 = _ [0
1 - 5x3 - v(x; + 5%, - 3). X = [0]

that are binding at the optimal solution are hZ(X) along with the

2 1 0 3
lower limits on xl and xz, so M* = [1 0 1], and Vf(X) = [ 2] =

5 0 0 15
* 2, % * * 2 1 0
(yz)Vh (X") + (:1)11 + (tz)x2 = (3)|1} + (-3)|0o|+ (-1)]|1].
5 0 0
(b) Problem 7-3. Here x* = [1?5], s* = [g], Y = [2?25]
and T* - [2675]° V£ (X) = [g] and M* - [i 3] and indeed Vf(X) =

(v3)1r%(x*) + (ehi, = (2.25)[1] + (2.75)[3].

* *

(c) Problem 7-4. X* =p[0 5 10 01, s* = [0 o071, Y*

= [2 4]’ and T* =[-3 0 0 -111'. ¥f(X) = [1 8 10 9]’ and
2 0 1 0

w = (9 2 0 0 sowrxy = whHwrtxh) + wHwPaxt) + D1y
0 5 0 1

(t])I, = (2)M] + (4)M + (-3)M3+ (-11)M).

10.6. (a) Example 1. M* = [‘3] and po(M*)

[}
[y
.

(b) Example

1
2. M = [1] and p(M*) = 1. (c) Example 3. M [; lé] and
1
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0
0

*

o(M*) = 2. (d) Example 4. M* = [] and o(M*) = 0= 1. (e)

* 1

Example 5. M = [—0 g] and p(M*) *

1= 2. (f) Example 6. M =

[1(2)]. (c) x* = [2‘;].

0 O L
[1 _1] and p(M") = 1 = 2.

10.7. (a) x*

1]
| e |
N
(=R}
e
~~
o
N’
>
*
1
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Chapter 11

11.1. (a) The Hessian matrix for f(X) in the primal problem

-2 0 O
is H = [ 0 -2 0], which is negative definite, so f(X) is concave,
0 0 -2
and with linear constraints, the conditions for (11-11) to be the
dual to (11-7) are met. Here this means that the dual nonlinear
programming problem is
e _ 2 2 2

Minimize A(X, Y) = - X] = Xy - x3 o+ 4x1 + 6x2 - yl(x1 + x,
- 2) - y2(2x1 + 3x2 - 12) - xl(—Zx1 + 4 - vy - 2y2) - xz(—2x2 + 6
- ¥ ~ 3y,) - x3(-2x3), subject to y; + 2y, + 2x; - 420, y; +
3y2 + 2x2 -6 2 0, 2x3 z 0 and ¥y = 0, v, = 0.

(b) Here and in part (c), you can rewrite the nonlinear
primal problem as one of maximization of -f(X) and, in part (b),
reverse the direction of the primal inequality by multiplying
through by -1. Then the dual will be a minimization problem,

formulated as in the text. In that case, H = [_13 _18

we have a concave objective for the nonlinear primal maximization

], SO again

problem, with a linear constraint, and the structure of (11-11)
indicates the dual. Alternatively, you could work out the
nonlinear maximization problem that is dual to a nonlinear primal
minimization problem. Using the former approach,

Minimize A(X, y) = —6xi - 5x§ - y(—x1 - 5x2 + 3) -
xl(—12x1 + yv) - xz(—10x2 + 5y), subject to -y + 12><1 2 0, -5y +
10x2 2 0 and vy Z 0.

[Here and in part (c), below, there is only one vy since there is
only one constraint in the primal problem. ]

(c) Minimize A(X, y) = -6xi - ng - y(x1 + sz - 3) -
xl(—12x1 -yv) - xz(—10x2 - 5y), subject to y + 12x1 2 0, 5y + 10x2
Z 0and y 2 0.

11.2. (a) Starting with Problem 11.1(b), because it is
smaller; after some algebra, the objective function is A(X, y) =
6x§ + 5x§ - 3y. Using ¢'s for the Lagrange multipliers in this
minimization problem, the optimal solution is u; = 3/31 = xI, p; =
18/31 = x3 and y* = 36/31 = A*. Slacks in the two dual
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constraints are tI = 0 and t; = 0; in the primal problem, s* = 0.

12 0 0
The Hessian matrix for this problem is, H(A) = [ 0 10 0].
0 0 0

This is only positive semi-definite, from the rules on all seven
principal minors, given in (1-41) in Chapter 1. A(X, y) does
satisfy the necessary conditions for quasi-convexity, in (3-1-11)
in Appendix 3.1.

The conditions in Theorem P-D3’ are X*-T* = 0 and y*.g* = 0;
it is clear that they are met by this pair of optimal solutions.
Concerning Theorem P-D4’', note that f(x*) = 1.742 in the primal,

3/31} _ |0.097
18/31] ~ |0.581

the primal constraint by 0.1 leads to x** = [8‘;] and f(x**) =

1.860. Note that y* = 1.16, and £(X**) = £ (x*) + (v*)(8®) = 1.742
+ 0.116 = 1.858 = 1.86.
(b) Here the simplified objective function is A(X, Y) =

where X* = [ ]. Increasing the right-hand side of

xi + x% + x% + 2y1 + 12y2. The full solution for the nonlinear
gual is M* = [4] w3 w31 = [0.5 1.5 0}, v* =3 oy, "=
[t: t; t;] = 0. The optimal solution to the nonlinear primal

was X* = [0.5 1.5 0]’, s* = [0 6.5]" and A* = [3 0]’. As in

part (a), A(X, Y) is "almost" quasiconvex, with a multidimensional
trough-like shape, and the solution represents a minimum.

It is apparent that the conditions of Theorem P-D3’ are met.
Also, in the primal problem, f(x*) = 8.5. If we increase bl by

0.1, so the constraint reads Xp + Xy = 2.1, x** = [g'gg] and

F(X**) = 8.795 = £(X*) + y](4b;) = 8.5 + (3)(0.1) = 8.8. Since
the second constraint is not binding, increasing b2 does nothing
to the optimal solution; y; = 0. The conditions of Theorem P-D4’
are satisfied.

11.3. (a) Problem 10.1 is

Maximize f(X) = - x% - x% - x% + 4x1 + 6x2
subject to X, + X, <= 2
<
2x1 + 3x2 = 12
and X 2 0
40
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(al) Zoutendijk. Let X° = [0 0 0]'. since v/ (x°) =

[4 6 0]’, move through the feasible region, from the origin,
until a constraint is hit. (The gradient itself is the first
feasible direction.) It is obvious from the problem that xg =0,
so in what follows we will deal with finding the optimal xl and x2
only. In this and other applications of Zoutendijk's approach, if
there are only two unknowns, it is very helpful if you draw the
solution space geometry for each of the Zoutendijk linear

K . K

programs. Using the normalizations -1 = d1 =1 and -1 = dz <1

means that the feasible region is contained in a square with
vertical sides at d? = *1 and horizontal sides at d;: * 1.
. . . . 1 0.8 1 2.4
. < = =
Since Xp ¥ x5 = 2 is hit first, X [1_2]. Now ¥ [3.6]
and so the next Zoutendijk linear program is

Maximize 2.4di + 3.6d%
subject to -1 < di <1
1
- < - <
12d)<1
1 1.
dl + d2 <0

(The last constraint reflects the fact that at xl we have bumped
into constraint 1.) It is clear from this constraint that at
least one of the d's will have to be negative; so the simplex
method with nonnegativity requirements needs to be modified.
Considering the geometry of this problem, the feasible region
is the left lower triangle in the feasible square, and the optimal

. . 1 _ 1 _ 2 _ L1 1 _ [0.8 -1
solution is dl = -1, d2 =1, so X" = X" + aZD = [1.2] + az[ 1].

Doing a line search along this direction, it is easily established

that the maximum f(X) is at a, = 0.3, so that x2 = [g’g]. Since

this is not at an endpoint of constraint 1, there is no incentive
to look further. (If you wanted to continue building Zoutendi jk

linear programs, you would find that at XZ the new linear program
requires maximization of 3d% + 3d§, which is parallel to the

constraint d% + d% £ 0, so there are multiple optima, including

[8]——which means don't move at all. Other optima send you back

and forth along the constraint, always telling you to undo the
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step that you have just taken.)

(a2) Rosen. At X', al = [1 11, so, from (11-2), M} =

1.,:a1,,1,,,-1 1 . . . -0.
e ST FI I 52 [ 3 1
1 _ 1,1 0.5 -0.5]{2.4] _ }|-0.6 2 _ 1
and G = MV = [_0.5 0.5][3.6] = [ 0.6]' Therefore, X = X" +
261 and, using a line search along G confirms that the maximum
occurs when a, = 0.5, so that X2 = [2‘2

that this is indeed optimal by looking for GZ, the projected

gradient at this point. Since M2 = M', and since V2 = [g], 6% -

N

Problem 10.2 is

ol

]. You can be convinced

Minimize  6x> + 5x2
subject to xq + 5x2 z 3
and X 2 0
(a3) Zoutendijk. Let x° = [i], a point inside the
feasible region for this minimization problem. VO = [ig]; since

this is a minimization problem, we move in the direction of the
negative gradient. Starting out in this way, move along the

negative gradient until the constraint is hit. This is at xl =

3/26 1 _ 36/26 . . . . .
[15/26]' where VvV = [150/26]’ Again, since direction is all that
is important, normalize the gradient to Vl = [22]- The first

Zoutendijk linear program is

Maximize —Sdi - ZSd;
subject to -1 < di <1
1
- <
1<day<1
1 1.
d1 + 5d2 <0

From this (again it is easy if you sketch the feasible region), D1
_ -1 2 _ 3/26 -1 . -1
= [0.2], so X© = [15/26] + al[o. ]_ A line search along [0_2]

L. 2 _ 3/31 _
(now for a minimum) leads to X" = [18/31] when a, = 0.0186.
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1 _ 3/26] .
(a4) Rosen. The route to X = [15/26] is the same as

1

with Zoutendijk. Now Al = [1 5] so M! = [25/26 =5/26

1 _
-5/26 1/26] and 6 =

191 _ [150/676]

. i : . 1
My -30/676]° the direction component is [_0.2] and so the

direction in -G! = [0‘;] is exactly the same as D! in Zoutendijk's

approach to this problem, and we will come to the same optimal

point.
(b) The linear program in (7-6) is
Maximize n= 2x1 + 5x2
subject to X, + 2x, =10
<
3x1 + 2x2 < 24
<
X+ 10><2 < 40
and X 2 0
(bl) Zoutendijk. Assume that xo = [8]; for this problem
V(X)) = [g], so move in this direction until a constraint is hit;
in this problem, it is the third constraint 3. That point is xl =
[gg;ig]. (It is not so important to identify each point in using

either Rosen's or Zoutendijk's approach on a linear program

because the gradient is constant, namely P’'.) Now determine a
direction vector, D1 = [di d;]', from the linear program

1+5d;

<1

Maximize 2d1
subject to -1 = d

N = =
1A

-1 =4d 1

a + 10d; < 0
Again, as will generally be true in Zoutendijk linear programs, it
is clear from the last constraint that at least one of the d's
will have to be negative. From a simple sketch of the problem,

1_[ 1
D" = [-0.1]'
1

Now we move along the original constraint, in the D
direction, until the next constraint is met. This will be the

first constraint, where X = [3‘35]. So the next Zoutendijk linear
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program is

Maximize Zd% + 5d§
subject to -1 = df <1
2
- < <
1 = dz <1
2 2
dl + 10d2 =0
2 2 .
dl + 2d2 <=0
It is easily established that D2 = [g], so there is no incentive

to move from the current position, X = 2.5 , defined by the
3.75

intersection of constraints 1 and 3 in the original problem.
(b2) Rosen. The initial step will be the same as with

20/13 1

Zoutendijk, leading to xl = on constraint 3, so A" = [1
50/13

10] and, again using (11-2), Ml = [igg;igi "125181] and so G1 =
[i?g;igi]. What is important in G1 is direction, not magnitude,
" R B 1 _ 10 2 _ L1 1 _ f20/13
so "normalize" this to G = [_1]. Then X™ = X" + a,G" = [50/13] +
1

az[io] and a line search indicates that we should go all the way
to the next constraint (which is constraint 1), so x2 = [3'35].

Since we are now at a corner and not on just an edge, as was xl,

Rosen projects onto an edge. This is clear when you try to form

M% as in (11-2); A% = [} 2| ana (%)’ [a%2a2%)y17a% = [} 9} so
1 10 0 1

Mz = 0. There are two possibilities:

(i) Let A = [1 10], so that we are investigating
projecting onto constraint 3. (We know that we don't want to do
this, since we just came from there, but it is useful to see how
Rosen's method keeps us from doing it.) In that case, the
"normalized" G = Eg ,
it presumes that we could still move rightward further along
constraint 3, but that would take us outside of the feasible

but moving in this direction is impossible;

region, because we have bumped into constraint 1 also.
(ii) Let A = [1 2], so we are investigating a
projection onto constraint 1. Now the normalized projected
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gradient is G = [—f]. Movement in this direction is also

impossible. It presumes that we can move leftward along
constraint 1, which takes us outside of the feasible region.

The conclusion is don't move from X2 = [g'gs].
0

11.4. (a) Zoutendijk. If you start at Xo = 0, where V~ =

[4 6 10]', you would not need to modify the initial gradient,
0

and find xl = X + alvo, where you stopped when you hit the first

constraint; this would be when ay = 0.4 when Xg = 4.
Alternatively, construct the initial Zoutendijk linear

program at XO:

Maximize 42° + 620 + 10d°
1 2 3
subject to —15d‘;s1
0
- <
1<ad=1
0
- < <
1<ad=<1
-1 0 0],
o -1 o/p’=<o0
0 0 -1

The last three constraints reflect the fact that currently all x's
are at their lower limits. From the structure of the problem, it

0

0 1
is clear that D" = [1 1 1]1’, so x1 = [O] + ao[l]. A line search

0 1
indicates that f(X) is maximized when g = 3.3, so that X* =

3.3 1 -2.6
3.3}. Here, V' = |-0.6|, and the next linear program is

3.3 3.4
Maximize -2 6d1 -0 6d1 + 3 4d1
-6d; - 64, -4dg
subject to -1 = di <1
1
- < <
1 = d2 <1
1
- < <
1 = d3 <1

1 -1 2 3.3 1
for which D* = |-1}, so X“ = |3.3] + a,|-1|]. A line search for a
1 3.3 1

maximum along this line takes us beyond x3 = 4, so we stop when

2.6
that constraint is hit (al = 0.7), giving xz = [2.6].
4
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-1.2
Now VZ = 0.8] and the new Zoutendijk linear program,

2
including the new constraint d% < 0 (because we are at the upper

2 -1 3 2.6
limit of x3), has an optimal solution D™ = 1], so X~ = |2.6
0 4

-1
+ az[ 1}. The maximum for f(X) along this direction is when a, =
0

3 2.1 3 -0.2
0.5, giving X~ = |3.1|{. Here V- = |-0.2| and the solution of the

4 2
3 -1
next Zoutendijk linear program is D™ = |-1] and, with an optimal
0

4 2.1 -1 2 4
aq = 0.1, we find X~ = [3.1| + (0.1)]|-1| = |3]. At this point, ¥
4 0 4

= [O], indicating that this is the optimal solution. You don't
2

want to move away from the current xl or xz, and you would like to
increase x3 but you can't, since it is already at its upper limit.

3.3
(b) Rosen. The route to xl = [3.3] and then to x2 =
3.3

2.6
[2.6] will be exactly the same as in Zoutendijk's approach. At
4
v

2 2 -1.2 2
X, = 0.8}, and X3 is at its upper limit, so A" = [0 O 1],
2
2 1 0 O 2 -1.2 3 2.6 -1.2
M™ =10 1 0} and G” = 0.8]. X~ = 12.6] + a, 0.8], and a line
0O 0 O 0
search will turn up a maximum when o, = 0.5, so that X3 = [3}. At
4
0
this point, V3 = [0], and, as with Zoutendijk, we are finished.
2

11.5. (a) With fl = 18 - 2(x1 - 3)2, fz = 49 - (x2 - 7)2.
gl(xl) = xi and gz(xz) = X, and given the mesh points indicated,

we have
xp o f0¢0) &) x5 Falxy) 8,(xy)

ij 0 0 0 0 0 0

xl. 1 10 1 2 13 1
J

xz. 2 16 4 4 24 2
J
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x3j 3 18 9 6 33 3
x4j 4 16 16 8 40
The separable programming problem is

Maximize 0a01 + 10cx11 + 160121 + 180t31 + 16a41

+ anz + 130112 + 240122 + 33a32+ 400142
subject to
0a01 + oy, ¢ 4a21 + 9a31 + 16a41
* 00gy + logy + 205) + gy Aoy, =16
%1 * %1 + 0, + Ogy oy, <1
Aoy + Qyp + Gy y + Ogy + Oy =1

and all a's nonnegative
In addition, you need the restricted basis entry rule; positive
qij must be adjacent for j =*1 and for j*= 2.
After several pivots, o3y = 1 and Q35 = 1. In terms of the

5
original problem, x* = T o, .x = (1)(3) 3 and x = b)) o x
1 k=0 2 k=0 k27k2

= (1)(6) = 6 and f(X*) = 66.

Note: the reason for using 18 in fl(xl) and 49 in fz(xz) was
to create coefficients of zero on a01 and a02 in both the objective
function and the first constraint. This, in turn, allowed us to
bypass the two-phase approach for linear programs with equality
constraints, since a01 plays the role of slack variable in the
second constraint and %92 does the same in the third constraint.

(b) Ignoring nonnegativity and the constraint, x* = [3].

This satisfies both the constraint and nonnegativity and f(x*) =
67. Since the unconstrained maximum satisfies the constraint, it
is unnecessary to also investigate the solution that occurs when
the constraint is imposed as an equality.

11.6. For the original problem, only one pivot is required

to reach the optimal solution, which is x* = [lg] and N* = 40.

For the rewritten version of the problem, after two pivots, X* =

0
[10] and n* - 40. Note that x; = ﬂ*, as we would expect.
40

11.7. For the original problem, x* = [g] and f(x*) = 120.
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For the rewritten problem, X* = [x¥ x* x;]' = [4 6 1201 .

11.8. The transformed problem is
Maximize F(xl, ceer Xpo xn+1) = Ox1 + ... + Oxn + X
subject to A'(X) £ 0

-f(X) +x_,, S0
=

>
and x, z 0o, ..., xn 0

n+l

The Kuhn-Tucker conditions are:

m .
1 g -
- Fy - i§1 ARY F RSy 20 (i =1, ...,
1-2,,,50
m i
F. - x =
(b) *3F3 7 B N ey 2 0
a1l ~Agyq) =0
“ Rix) = 0
C
-f(X) + X 41 <0
AR =0
(@) >‘m+1("f(x) * xn+1) =0

() x; 20, ..., x 20, A 20, ..., A .20

n
Notice that Fj =0(j=1, ..., n), so (a) and (b) become

- arl oo < =1, ...,
1 -Apy1 =0
o i
(- ) N . 0
xn-rl(1 km+1) 0

The Kuhn-Tucker conditions applied directly to the

untransformed problem are:

(a’) fj - ;

nMas
>
g

i
ij

1
m .
£ AAh) =0

‘ - 1
() x5y - E A

(c') higx) <0
(@) 2[RN(X)] =0
48
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(') x3 20, ..., x, 20,2 20, ..., A =0

Starting with (a) in the conditions for the transformed

problem, Am+1 2 1. From (d), this means that xn+1 = f(X), always.
(i) 1f km+1 = 1, the conditions in (a) - (e) are exactly the
same as those in (a’') - (e’').
(ii) If Km+1 > 1, then from (d4), Xoe1 = 0 = f(X). If you

work through the implications in (b) and (d), you will find that
exactly the same possibilities occur as you would find in (a') -
(e').

11.9. Solution of this problem follows exactly the same
steps as were used for Problem 11.8. However, in this case the
transformed objective is to minimize x and the added constraint

is x4 z f(X).

n+l1

2%y o _ [2 0
11.10. (a) Here VA(X) = 2% | and with X° = [2], h(X7) =
2

-8. So the first constraint, cl, to be used in conjunction with
the linear objective function to create an approximating linear

xy - 2

6x1 + 8x2 and X 2 0, the optimal solution

x, - 2
program is -8 + [4 4][ 1 ] < 0, which is xl + x2 £ 6. In

conjunction with f(X)

to this problem is x1 = g].

0

Now Vh(X1) = [12

], h(xl) = 20 and the next linear constraint,

x . -0

€y is 20 + [0 12] 1 < 0, or x, £ 4.333. The maximum is at
x2—6 2

. 2

_ _ _ [1.67
the intersection of ¢; and ¢,, so X" = [4.33]'

Now Vh(xz) = [3'23 , h(xz) = 5.56. Since 5.56 measures the

amount by which the original constraint is violated by x2, and
since this is greater than £ = 1.0, we continue. The next linear
constraint, €3, is 30x1 + 78x2 < 338. The maximum is now at the

1 3’ 3.29

2';2]. h(x3) = 2.16 and the next constraint, ¢,, is

5.42x1 + 6.58x2 < 34.17. The maximum to this linear program with

intersection of ¢. and ¢ where x3 = [2'71].

vr(x3) = [
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now four constraints is at the extreme point defined by the

_ ) . g4 _ [1.96
intersection of ¢, and ¢,; X° = [3.58]'

Vh(x4) = [3‘?2], h(x4) = 0.66 and the next constraint, Cgo is
3.91x, + 7.16x, = 32.65, for which x> = [513?

intersect. Since h(xs) = 0.18 < £, stop. Using a smaller £ would

], where c4 and c5

carry us closer to the true solution, found in part (b), below.
(b) (i) Ignoring nonnegativity and without the

constraint, the problem is meaningless, since f(X) is linear, and

so f(X) » © as X, » @ and x, *» . (ii) With the constraint as an

equation, the Lagrangian function is L = 6x1 + 8x2 - K(xi + x% -

16) and x; = 2.4 and x; = *3.2. The positive solutions must be

3.2
11.11. Here is the series of cutting lines to create a

chosen, so X* = [2'4], A* = 3/x; =~4/x; = 1.25 and F(X*) = 40.

series of linear programming problems, with f(X) = xl + x2, along
with other relevant information at each solution:

k Constraint xk h(Xk) vh(xk)
o R
1 e, 6x; + 8x, < 29 :4683j 52.08 [23]
2 e, x,<3.03 :f:gg: 13.19 :1§:i8:
3 ¢, 18.18x, + 5.40x, < 48.64 :g:gg: 3.38 [lg:gg:
4 ¢, 12.36x, + 8.32x, < 39.39 :5:25: 1.24 :g:gg:
5 o 9.06x, + 9.96x, < 37.24 :;:Zé: 0.41 :1g:éij
6 cg 10.44x + B.64x, < 36.42 :5:;3: 0.07 :g:?g:
7 ¢, 9.58x, + 9.16x, £ 36.07 :;:ggg] 0.028 :g:gg:
8 cg 9.06x, + 9.48x, < 36.074 :;:g;gg] 0.007 so STOP
The optimal solution to this problem using exact methods (not

approximations) is X* = [;.gggg]'
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11.12. (a) Here are results for

L(X; #) = -6x; - 8x) - u In (-x} - x5 + 16)
(ignoring explicit consideration of X = 0).
u x; X, ’ f(X)
1.0 2.3408 3.1210 39.0128
0.1 2.3940 3.1920 39.9000
0.01 2.3973 3.2008 39.9902

(b) The exact answer is x* = [g'g].

11.13. Here are results for

L(X; &) = —x; - %, - & 1n (= 3x2 - 2x2 + 18)
H xq Xy 7 (X)
1.0 1.2 1.8 3.0
0.1 1.5097 2.2645 3.7742
0.01 1.5452 2.3178 3.8630
0.0001 1.5492 2.3237 3.8729
As we saw in the solution to Problem 11.11, the exact
solution is X* = [;:g;gg], and 7(x*) = 3.873.
11.14. Here are results for an exterior point SUMT approach:
L(X; u) = Xq + Xy - 1n (3x§ + 2x§ - 18)
M x) x, £(X)
1.0 2.0 3.0 5.0
0.1 1.5897 2.3846 3.9743
0.01 1.5532 2.3298 3.8830
0.0001 1.5492 2.3239 3.8731

11.15. (a) For this quadratic program
[—4 0O -1 1 0 O] [—12]
M= 0 -2 -1 0 1 0| and N = |-14
1 1 0O 0 0 1 5
and V = [xl xs Kl Kz k3 s]’. There are up to Cg = 20 basic
solutions to the system MV = N, as in (11-55). Of these, three
have singular coefficient matrices and of the remaining 17, 12
generate solutions that fail nonnegativity requirements. Of the
remaining five, four fail one of the conditions in (11-53")(b).

The one that is left is x* = [;'223], which is the correct

solution.
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(b) For the current problem, g,(x;) = x; and g,(x,) = x,.
Using mesh points 0, 1, 2, 3, 4, 5,

xg (3= 1,2) f10¢) &%) Fox5)  8,(xy)

X053 0 0 0 0 0
J

X9 1 10 1 13 1
J

X5 5 2 16 2 24 2
J

x3j 3 18 3 33 3

Xgs 4 16 4 40 4
J

Xg s 5 10 5 45 5
J

The separable programming problem is

Maximize 0001 + 10a11 + 160!21 + 18a31 + 16a41 + 100(51
+ 0a02 + 13a12 + 24022 + 33a32+ 40a42 + 450t52
subject to
0&01 +og, 4 2&21 + 3a31 + 4a41 + 5a51
+ anz + lalz + 2a22 + 3a32+ 4a42 + 5a52 £ 5
Agp * Hqp * Oyp t gyt 41 * %5 =1
Agp + Ay + Ggy + Ogy + Oy, + Og, <1

and all a's nonnegative
In addition, there is the restricted basis entry rule; positive

aij must be adjacent for j = 1 and for j = 2.
After several pivots, a:l = 1 and azz = 1. In terms of the
5

original problem, this means xI = T “;1Xk1 = (1)(1) = 1 and x; =
k=0
5

zo opX,, = (1)(4) = 4 and f(X*) = 50.
k=
* _ 11.333 *,
(c) X = [3.667] and (X" ) = 50.333.
11.16. For the primal maximization problem, H = "g _g], so

f(X) is concave and the constraint is linear. Then the structure
of the dual problem is as given in (11-11), namely
Minimize A(X, vy) = —2xf - x% +12x) + 14x,
- y(xl + xz - 5) - xl(—4x1 + 12 - v) - xz(‘zxz + 14 - y)
subject to y o+ 4x1 =z 12
v o+ 2x2 = 14
and v 2 0
After algebra, this objective function is
Minimize A(X, v) = 2xi + x5+ 5y
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Using the full set of Kuhn-Tucker conditions on this problem
requires examination of eight alternative possibilities. All but

11/3
50.333. As was the case with the minimization functions in

one will be rejected, leaving X* = [ 4/3], v* = 20/3 and F(x*) =

Problem 11.2, A(X, y) has a trough-like shape and fails
sufficiency tests for convexity or quasiconvexity, but x*, y*
represents a constrained minimum point.

Theorem P-D3’ requires y*(xI + x; -5) =0, xI(—4xI + 12 -
v*) = 0 and x;(-2x5 + 14 - y*) = 0. It is easily verified that
all three of these conditions are satisfied.

Theorem P-D4’ indicates that an(x*)/obi = y: under certain
conditions. If you redo the primal problem, with the constraint

* _ [ 5/3 ®_
changed to X+ Xy <6, X = [13/3] and f(X) = 56.333. The

change in f(x*), for a unit increase in the right-hand side of the
constraint, is 6. Now consider the primal with the constraint

1
3

The change in f(x*), for a unit decrease in the right-hand side of

changed to X o+ %, < 4; the solution is x* = [ ] and f(X*) = 43.

the constraint, is -7.333. The average change, for a unit
increase or a unit decrease, is 6.667 and y* = 6.667, as the
theorem suggests.
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