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This File contains a subset of the figures published within Searching for 

Molecular Solutions which are considered to be enhanced further when rendered 

in color. Most (but not all) of these are protein or nucleic structural images and 

diagrams. In some cases, more informational detail is also provided within the 

Figure itself.  
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CHAPTER 2 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2.2 COLOR VERSION 

 

Modularity of protein domains, using as an example factors required for protein 

synthesis (elongation factor 1-alpha [eEF1-] and elongation factor G [EF-G], 

both in complex with guanosine diphosphate [GDP]) 1. The N-terminal domains 
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of both (the GDP-binding domain 1 and the ‘translational protein’ domain 2, as 

shown) are in structurally homologous families, but their C-terminal domain 

structure is divergent (indicated also with domain schematics below their 

corresponding structures, and with matched colors for homologous domains). 

Sources: Protein Data Bank 2; eEF1-: 1JNY 3; EF-G: 1DAR 4. Images 

generated with Protein Workshop 5 

 

 

http://www.pdb.org/
http://www.rcsb.org/pdb/cgi/explore.cgi?pdbId=1JNY
http://www.rcsb.org/pdb/explore/explore.do?structureId=1DAR


Searching for Molecular Solutions 5 

CHAPTER 3 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3.1 COLOR VERSION 

 

Schematic of general antibody (immunoglobulin) structure. VH, heavy-chain 

variable region; CH1-CH3, constant region (domains 1-3); V,  (kappa) or  

(lambda) light chain variable regions; C,  or  light chain constant regions. 

Chains are joined by disulfide (S-S) bonds. CDR = complementarity-determining 

regions for heavy and light chains. Chapter 7 (Fig. 7.1, and this site) provides 

more structural details for antibodies. 
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Fig. 3.2 COLOR VERSION 

 

This is an expanded version of Fig. 3.2 of Searching for Molecular Solutions (in 

Chapter 3), which includes secondary selection for affinity-matured antibodies in 

germinal centers, and differentiation of B cells into antibody-secreting plasma 

cells, as shown.  

 

Schematic showing some of the important primary interactions required for B cell 

activation in the adaptive immune system. Abbreviations: DC, dendritic cell; TH, 

PAMP 
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naïve T helper cell; TH2, T helper cell Type 2 (specific subclass of thymus-

derived lymphocyte); B, B cell (bone-marrow derived lymphocyte); Ig, 

Immunoglobulin; PAMP, pathogen-associated molecular pattern; TCR, T cell 

receptor; TLR, Toll-like receptor; MHC, major histcompatibility complex protein. 

Innate molecular sensing can occur through either surface or intracellular 

recognition molecules (exemplified by TLRs here, but additional molecules also 

exist 6). 

 

Note that this schematic has been considerably simplified in not showing many of 

the costimulatory signals which are essential for the differentation events to 

occur. Also, interactions between dendritic cells and naïve T helper cells can also 

result in differentiation of different helper cell subsets, such as TH1 cells.  
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Fig. 3.4 COLOR VERSION 

 

Structures of T cell receptor and MHC. A. Structure of a specific T cell receptor 

(TCR; ) complexed with Class I MHC (human HLA-A 0201) with bound viral 

peptide (LLFGTPVYV; tax peptide fragment from human T lymphotropic virus 

Type 1). -2 microglobulin is associated with the heavy chain of HLA molecules. 

Only extracellular domains present; different domains shown with separate 

colors. B. Structure of Class I MHC (Human HLA-A2) heavy chain viewing the N-

terminal peptide-binding groove (minus peptide) formed from a platform of 

antiparallel -strands (green segments) and enclosed by -helices (red 

segments). In Class I MHC, the peptide-binding groove is formed solely from the 

heavy chain (as in B); in Class II MHC it is formed from association of both the 
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separate  and  chains (not shown; 7; See Cited Notes Chapter 3 ‘MHC-peptide 

binding’ in this FTP site for further information). Source: Protein Data Bank 2; 

Panel A: 1BD2 8; Panel B: 2GUO 9. Images generated with Protein Workshop 5.  

http://www.pdb.org/
http://www.rcsb.org/pdb/explore/explore.do?structureId=1BD2
http://www.rcsb.org/pdb/explore/explore.do?structureId=2GUO
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Fig. 3.5  COLOR VERSION 

 

Depiction of MHC peptide binding. Red, green, and blue segments indicate -

helices, -strands, and loop regions respectively. Two MHC Class I alleles (A 

and B, structures shown with superimposed schematic peptides in binding 

grooves) each can bind a large but restricted set of peptides, restricted by 
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defined anchor residues (colored circles). Remaining peptide residues (lines) are 

less constrained. Source: Protein Data Bank 2; MHCA: HLA-A2, 2GUO as for Fig. 

3.4; MHCB:  HLA-B*2705, 3B6S 10. Images generated with Protein Workshop 5 

http://www.pdb.org/
http://www.rcsb.org/pdb/explore/explore.do?structureId=2GUO
http://www.rcsb.org/pdb/explore/explore.do?structureId=3B6S
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Fig. 3.7  COLOR VERSION 

 

Schematic depictions of sweet and bitter taste receptor cells and receptors. Left 

panel: Sweet taste cell and receptors (T1R2 / T1R3 heterodimers of 7-

transmembrane segment G Protein-coupled receptors). Ligand 1: sweet tastant 

N-terminal site; ligand 2: sweet tastant extracellular transmembrane site. Right 

panel: Bitter taste cell and receptors. T2Rs may also function as dimers; ~30 

different T2Rs are believed to be expressed per cell. 
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CHAPTER 4 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4.9  COLOR VERSION 
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Depiction of certain types of genotype-phenotype linkages. Red stars indicate 

locations of DNA sequences encoding specific mutant library members; Blue 

stars indicate corresponding expressed proteins or peptides. A, Expression of a 

library of mutant proteins within bacterial cell compartments, with a single such 

compartment shown. Screening clones of individual cells, each with a separate 

mutant protein, yields the corresponding genetic information as long as clonal 

library members are evaluated separately. If library cells are lysed en masse, no 

linkage between mutant proteins and the gene(s) which encode them is 

maintained. B, If mutant proteins are engineered such that they are stably 

expressed on the surface of the bacterial cell, physical selection for a binding 

interaction with the surface protein also delivers the accompanying ‘attached’ 

whole cell with the appropriate genetic information. C, Linkage between a mutant 

protein and the genetic information which specifies it, via phage proteins. Phage 

DNA entering a bacterial host cell is engineered to encode a library of fusion 

proteins between the protein of interest (mutagenized as desired) and a constant 

phage structural gene. (All genes required for the normal phage lifecycle are left 

intact). Upon assembly of phage virions, the fusion protein is incorporated into 

the phage structure (in this example, a phage tail tube); phage DNA which 

includes the specific mutant protein sequence is incorporated into the phage 

head structure. In both B and C, selection can be based on the properties of the 

specific expressed surface phenotypes. 
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Fig. 4.10  COLOR VERSION 

 

Structure of the filamentous phage fd (and relatives M13, f1). Red, green, and 

blue segments indicate -helices, -strands, and loop regions respectively. A, 

Phage virion showing the filament (in which the single-stranded phage genome is 

contained) composed of the major coat protein gp8 (product of Gene VIII), with 

the four minor proteins as shown at each end. The end mediating contact with 

the host bacterial F pilus and infection contains gp3 (product of Gene III), whose 

N-terminal domain structure is also shown; five copies are believed to be present 

in the phage filament 11 (N1 domain encircled with dotted line). Numbers show 

positions in amino acid sequence. Orange line depicts unstructured linker 

sequence between domains N1 and N2 (residues 65-91 as shown) also referred 

to as D1 and D2 12); light gray depicts the linker region joining to the C-terminal 

remainder of gp3. B, The N-terminal region of gp3 depicting an arbitrary helical 

peptide sequence fused and displayed at the N-terminus. The position of the N-

terminal fusion is such that it does not interfere with binding of the N2 domain to 
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the (schematically represented) F pilus 13 on the bacterial host. Source of gp3 

structures: Protein Data Bank 2; 1G3P. Images generated with Protein Workshop 

5. 

http://www.pdb.org/
http://www.rcsb.org/pdb/explore/explore.do?structureId=1G3P
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CHAPTER 5 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5.1  COLOR VERSION 

 

Structures of wild-type (WT; on left top and bottom) and mutant lipases from the 

bacterium Bacillus subtilis. Red, green, and blue segments indicate -helices, -

strands, and loop regions respectively. Top, whole enzymes comparing wild-type 

D132 

Y166 

A132 (WT) 

N166 (WT) 

Mutant 

N166 

(WT) 
Y25 

(WT) 

Y25 Y166 

Mutant 



Searching for Molecular Solutions 18 

14 and a double mutant with 100-fold improvement in its thermal denaturation 

time 15, showing the side-chains for the A132D and N166Y mutation in the 

mutant. Sources: Protein Data Bank 2;  1I6W (wild-type) and 1T4M (double-

mutant). Images generated with Protein Workshop 5. Bottom, regions of wild-

type (left; 16) and mutant 15 lipases compared to show an example of a stabilizing 

interaction (aromatic base stacking between mutant tyrosine 166 [yellow] and 

wild-type tyrosine 25 [purple]) which enhances interhelical packing. Sources: 

Protein Data Bank 2; 1ISP (wild-type) and 1TM4 (mutant). Images generated with 

Swiss-pdb viewer 17. 

http://www.pdb.org/
http://www.rcsb.org/pdb/explore/explore.do?structureId=1I6W
http://www.rcsb.org/pdb/explore/explore.do?structureId=1T4M
http://www.pdb.org/
http://www.rcsb.org/pdb/explore/explore.do?structureId=1ISP
http://www.rcsb.org/pdb/explore/explore.do?structureId=1T4M
http://au.expasy.org/spdbv/
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Fig. 5.2  COLOR VERSION 

 

Structure of a representative TIM ()8 barrel scaffold protein, the cyclase 

subunit of imidazoleglycerolphosphate synthase (product of the HisF gene, a 

component in the histidine biosynthetic pathway) from the hyperthermophilic 

prokaryote Thermotoga maritima 18. Red, green, and blue segments indicate -

helices, -strands, and loop regions respectively. View of the  barrel, with N- 

and C-termini of protein (253 residues) is shown. (In this enzyme structural motif, 

the active site is always configured at the C-terminal end of the barrel’s -strands 

19). Source: Protein Data Bank 2 ;  1THF 18. Images generated with Protein 

Workshop 5. 
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C-terminus 

(residue 253) 

http://www.pdb.org/
http://www.rcsb.org/pdb/explore/explore.do?structureId=1THF
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Fig. 5.3 COLOR VERSION 

 

Examples of analogous enzymes catalyzing the same glycosyl hydrolytic reaction 

(both 1,3-1,4--D-glucan 4-glucanohydrolases; from 20 and online supplement 

http://www.ncbi.nlm.nih.gov/Complete_Genomes/AnalEnzymes.html ). Red, 

green, and blue segments indicate -helices, -strands, and loop regions 

respectively. A, Enzyme from barley with a TIM barrel fold 21; B, Enzyme from 

Bacillus macerans (showing one subunit of a homodimer), with a very different 

fold (‘sandwich jellyroll’; Concanavlin A-like lectin fold), almost all -strand 22. 

Source: Protein Data Bank 2; A, 1GHR; B, 1MAC. Images generated with Protein 

Workshop 5. 

 

A B 

http://www.ncbi.nlm.nih.gov/Complete_Genomes/AnalEnzymes.html
http://www.pdb.org/
http://www.rcsb.org/pdb/explore/explore.do?structureId=1GHR
http://www.rcsb.org/pdb/explore/explore.do?structureId=1MAC
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Fig. 5.4  COLOR VERSION 

 

Structures of DNA ligases. Red, green, and blue segments indicate -helices, -

strands, and loop regions respectively. A, DNA ligase from E. coli bacteriophage 

T7 23 showing substrate binding cleft with cofactor ATP within it; B, E. coli DNA 

ligase with a (nicked) DNA substrate enveloped within a ‘protein clamp’. Source: 

Protein Data Bank 2; A, 1A0I; B, 2OWO. Images generated with Protein 

Workshop 5. 

ATP 
DNA  

substrate 

A B 

http://www.pdb.org/
http://www.rcsb.org/pdb/explore/explore.do?structureId=1A0I
http://www.rcsb.org/pdb/explore/explore.do?structureId=2OWO
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Fig. 5.6  COLOR VERSION 

 

tRNA structural arrangements with example of 76-base yeast phenylalanine-

tRNA. A, Classic ‘cloverleaf’ diagram of this tRNA secondary structure, showing 

conventional hydrogen bonding (lines), enzymatically-modified unusual bases, 

and GAA anticodon. Note that the third ‘wobble’ position G in the anticodon (with 

respect to the UUC codon) is itself a modified guanosine residue. B, Tertiary 

(crystal) structure of this same tRNA. Bases 1-33 shown in gray, 34-36 

(anticodon, red; circled) and 37-76 in blue. Source: Protein Data Bank 2; 1EHZ 24. 

Images generated with Protein Workshop 5.
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Fig. 5.10  COLOR VERSION 

 

Requirements for expanded genetic code in vivo (in E.coli in this example) with 

‘orthogonal’ tRNA and aminoacyl-tRNA synthetases25,26. (1), A tRNA with an 

appropriate anticodon for suppression of a target stop codon (amber UAG in this 

example) must be altered (by directed evolution) such that it is functional in E. 

coli but not charged by any host cell aminoacyl-tRNA synthetases. Also, the latter 

host enzymes must not charge any E. coli tRNAs with the desired unnatural 

amino acid. (2), An aminoacyl-tRNA synthetase must be obtained (again by 

targeted mutagenesis and directed evolution) which charges its orthogonal tRNA 

with a desired unnatural amino acid (and no other natural amino acid), but at the 
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same time (3) fails to charge any host cell tRNA. (4) The unnatural amino acid 

must be transportable into the host cell. (An alternative available in some cases 

is to transfer exogenous biosynthetic machinery such that the unnatural amino 

acid can be synthesized in the host cell from common precursor molecules. 
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CHAPTER 6 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6.1  COLOR VERSION 

 

Structure of a hammerhead ribozyme (red) in complex with RNA substrate 

(green) 27. The C residue 5’ to the scissile bond site shown in purple (bond 

indicated with arrow). Regions of conventional H-bonding which direct the 

ribozyme to the target sequence specificity are indicated, as is the ribozyme 

H-bonding with 
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Catalytic  
pocket 
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catalytic pocket which contains invariant base residues. (The catalytic pocket is 

essential for activity, but the H-bonding regions can be arbitrarily altered for 

designed complementarity with a substrate bearing a GUC triplet). Source: 

Protein Data Bank 2 ; 488D. Images generated with Protein Workshop 5 

http://www.pdb.org/
http://www.rcsb.org/pdb/explore/explore.do?structureId=488D
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Fig. 6.7  COLOR VERSION 

 

Sequence and solution structure of an aptamer binding the dye Malachite Green 

(structural formula of dye as shown). The primary RNA sequence is shown with a 

schematic of the secondary structure on the left, and representation of the 

tertiary solution structure of the aptamer complexed with Malachite Green on the 

right 28. In the schematic, normal (canonical) Watson-Crick bonds shown by 

horizontal black lines, base triplexes (A26 U11:A22) and (A27 C10:G23) by blue 

lines / circles and red lines / circles respectively; and quadruple interactions (G24 

A31 G29:C7) by black lines / circles as shown. A9 and A30 (stacking interaction) 
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shown with gray circles. For tertiary structure, phosphodiester backbone shown 

(dark gray) with bases light gray; 5’ and 3’ positions as marked. Position of bound 

Malachite Green (green) as indicated. Source: Protein Data Bank 2 ; 1Q8N. 

Tertiary structural image generated with PyMol (DeLano Scientific LLC). 

http://www.pdb.org/
http://www.rcsb.org/pdb/explore/explore.do?structureId=1Q8N
http://www.delanoscientific.com/
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CHAPTER 7 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 7.1  COLOR VERSION 

 

Structures of antibodies, represented by Fab fragments (monovalent antigen-

binding fragments of whole immunoglobulins; see Fig. 7.2 of Searching for 

Molecular Solutions) from a monoclonal antibody (D44.1) against hen egg 

lysozyme 29. A, Isolated Fab fragment light chains (light blue) and heavy chains 

(dark blue), with the complementarity-determining regions (CDRs) as shown (VH-

1 = heavy chain CDR1, etc; CDRs1-3 colored red, purple, and yellow 

respectively). B; Same antibody Fab fragment complexed with its antigen 

lysozyme (same color scheme for heavy and light chains; lysozyme orange), On 

left, ribbon backbone image, on right, space-filling view. Source: Protein Data 
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Bank 2 ; 1MLB (left panel); 1MLC (right panel). Images generated with Protein 

Workshop 5. (ribbon diagrams) and PyMol (space filling; DeLano Scientific). 

http://www.rcsb.org/pdb/explore/explore.do?structureId=1MLB
http://www.rcsb.org/pdb/explore/explore.do?structureId=1MLC
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Fig. 7.3  COLOR VERSION 

 

Structure of a specific single chain-Fv construct 30. A, The light chain variable 

region segment (light blue, N-terminus (N) as shown) ends at residue 115 and is 

linked to the N-terminus of the heavy chain (dark blue) segment at position 135 

via a serine-glycine linker G3(SGGGG)4G as depicted (as an unstructured 

segment, the linker is not directly visible in X-ray diffraction images). The position 

of the C-terminus of the whole structure is as shown (C). B, The same structure 

looking down the antigen-binding region, with CDRs for light and heavy chains as 

shown (red, purple and yellow for CDRs1-3, respectively). Source: Protein Data 

Bank 2 ; 2GJJ. Images generated with Protein Workshop 5 with serine-glycine 

linker superimposed in the left panel. 
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Fig. 7.5  COLOR VERSION 

 

Comparison of crystal structures of the antigen recognition domains of shark 

IgNAR 31 (A) and camel (dromedary) VHH molecules 32 (B). -helices red; -

strands green; remainder (including variable loops) light blue, both complexed 

with a common target antigen, lysozyme (orange). Source: Protein Data Bank 2 

Shark IgNAR: 2I25; Camel VHH: 1ZVY. Images generated with Protein 

Workshop 5.  
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Fig. 7.9  COLOR VERSION 

 

Structures of some alternative scaffolds for molecular recognition. Turns and 

coils light blue, -strands green, -helices red; randomized regions in dark blue. 

N = N-termini. Sources: Protein Data Bank 2 : Ankyrin repeat 33 (1SVX); affibody 

34 (1H0T); four-helix bundle cytochrome b562 structure 35 (1M6T) 36; Monobody / 

adnectin (1FNA) 37, -strands A-G and loops shown (compare with schematic of 

Fig. 7.8 in Searching for Molecular Solutions), randomized loops as for 38; 

anticalin (1T0V)39,40. Images generated with Protein Workshop 5. 
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CHAPTER 8 

 

 

 

Fig. 8.5  COLOR VERSION 

 

‘Mix and split’ approach to combinatorial library generation from a starting 

framework scaffold structure on solid-phase beads. A small library can be 

produced after even the first round of derivatization, and successively diversified 

in succeeding rounds. Synthesis begins on a pre-determined structural scaffold 

with a limited number of reactive groups (black dots). In any one round, each 

separate compartment undergoes reaction with a specific chemical reagent (dots 

in right-hand corner of each capsule in the diagram) to produce a derivative 

Scaffold First Round

N

O

N

O

N

O

N

O

N

O

N

O

N

O

N

O

N

O

N

O

N

O

N

O

N

O

Mix

Split

Second Round

Solid-

phase

bead



Searching for Molecular Solutions 35 

which is capable of further reactivity. After a reaction round, mixing the products 

and redistributing them into new reaction compartments allows progressive 

diversification as indicated. (The process can be repeated beyond the second 

round as many times as desired). Note that each reaction solid-phase bead 

carries a unique chemical species; identification of functionally-selected 

compounds requires a means for encoding the synthetic combinatorial 

information and a means for reading it out after selection.  
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CHAPTER 9 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 9.7  COLOR VERSION 

 

A. ‘Omic’ relationships as a cycle. Code: G = Genome, T = Transcriptome, P = 

Proteome, M  = Metabolome, E = Epigenome. In this cycle, the genome gives 

rise to the transcriptome, and a portion of the latter in turn gives rise to the 

proteome. (For simplicity, in the case of eukaryotes, mitochondrial and other 

A 

B 
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organelle genomes are subsumed into the general ‘Genome’ category, though of 

course they are replicatively distinct). A portion of the proteome is concerned with 

synthesizing and processing small molecules (the metabolome), which are 

required for a variety of purposes at various points of this cycle. The metabolome 

(M) is shown as directly cycling back to the genome because specific parts of the 

metabolome (dNTPs; synthesized via the proteome) are required for DNA 

synthesis  and physically become incorporated into replicated genomes.  Each of 

these steps requires the feeding back and participation of specific members of 

the proteome, the transcriptome, and the metabolome for completion, which 

proceeds in a forward positive direction (small blue arrows; clockwise) or is 

controlled and regulated (negative direction; anti-clockwise small red arrows). 

The epigenome is derived from the genome by chemical modification (especially 

methylation), and serves as an additional regulator of transcription and genomic 

replication itself. The dotted line from the transcriptome to the metabolome 

indicates the former pathway during the RNA World. Note that in a specific 

organism, not all small molecules required for life processes are synthesized, 

since many can be acquired from the environment, but all organisms produce  a 

fraction of their required small molecules through their own agency. See Cited 

Notes file; Chapter 9 in the ftp site for further details. B. The same diagram used 

to represent the great 3-dimensional and temporal complexity of biosystems 

arising from the 1-dimensional genomic information string. 

 

Note that the ‘ON’ (or ‘forward) state for the epigenome in this diagram is 

essentially negative regulation (adding epigenetic tags such as 5-

methylcytosines usually acts to block gene expression; reversible by removing 

the tags enzymatically). Further information relevant to this scheme is provided in 

this ftp site; see Cited Notes for Chapter 9, Section 30.  
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CHAPTER 10 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 10.2  COLOR VERSION 

 

Depiction of a non-biological foldamer with an alphabet of six polymerizable side 

chain groups. From a random chemically-generated library of length 15 residues, 

a specific sequence (as shown) is functionally selected, but cannot be amplified 

as such. If a set of complementary groups for each ‘letter’ of the foldamer 

alphabet exist and are also polymerizable, mutual template-directed 

polymerization and amplification is conceivable if a polymerase capable of 

directing this exists. In lieu of this, other informational tags can be used to obtain 
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the needed foldamer sequence, as detailed in Chapter 8 of Searching for 

Molecular Solutions. 
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