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Chapter 1

Introduction

The programs FIT and DFIT ..nd maximum likelihood estimates for 20 continuous and 16
discrete distributions respectively. They also produce estimates of the covariance matrix of
the estimators as well as graphs that illustrate the quality of the ..t. The chi-square goodness-
of-..t test is also performed. The program CR evaluates probabilities for the collective risk
model. Frequencies used can be any of the models used in DFIT while severities can be any
of the models from FIT or a model entered by the user. In all cases the probabilities are
obtained using recursive formulas. Prior to the recursion, individual or aggregate deductibles,
limits, or coinsurances may be applied.

1.1 Guarantees, Disclaimers, and Help

The software and its documentation are provided “as is” and Stuart Klugman disclaims all
warranties, either express or implied, including, but not limited to, implied warranties of
..tness for a particular purpose. Stuart Klugman does not warrant that the software will
meet the user’s requirements or that the operation of the software will be uninterrupted or
error free.

Stuart Klugman will not be liable for any indirect, special, or consequential damages in
connection with or arising from the performance of or use of this software and its documen-
tation. Stuart Klugman shall in no event be liable for any damages whatsoever (including
without limitation, damages for loss of pro..ts or other pecuniary loss) arising out of the use
or of the inability to use the software and its documentation, even if Stuart Klugman has
been advised of the possibility of such damages.

There are a variety of reasons for the above disclaimer. First of all, no program can be
guaranteed to be free of bugs. The best we can hope for is that every time it fails to work
properly, I will correct the problem. It is not possible to anticipate every data set which may
be used and so every conceivable situation cannot be tested. Second, it is impossible for the
program to verify that the data you have entered means what you think it does. That is
why help from me is available. Third, I can only assure you that the programs run on my
computer. Although there is a great deal of compatability between systems, yours is not
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2 CHAPTER 1. INTRODUCTION

exactly like mine.

Because | have great faith in the ability of these programs to perform as promised, | am
prepared to ozer you unlimited assistance in helping them to work for you. This frequently
takes the form of you supplying your input ..le and my either explaining the sequence of
steps required to make the program provide the answer, or my informing you how the ..le as
constructed does not match the reality of your data or of your problem, or that a bug has
been discovered which will promptly be resolved.

Finally, I trust you, the user, are su€ciently familiar with the underlying statistical
princples behind these programs so that you may use them wisely as you conduct your
business.

1.2 Installing the programs

The programs are in the ..les FIT.EXE, DFIT.EXE, CR.EXE, FREQADJ.EXE, CRC.EXE, CRC2.EXE,
and RUIN.EXE and should work with any IBM compatible computer. If the 80x87 coproces-
sor is installed or is built in to your main processor, the program will detect and use it. If the
coprocessor is not present, it is emulated, so all users enjoy the additional accuracy provided,
but the coprocessor itself is needed to enjoy the extra speed. In order for the graphics to
work one of the following ..les should be in the same directory as the program.

File Graphics adapter
CGA.BGI IBM CGA and MCGA
EGAVGA.BGI | IBM EGA and VGA
HERC.BGI Hercules monochrome
PC3720.BGlI IBM 3270PC

I believe that if you have higher resolution capabilities (such as super-VGA or IBM 8514)
the program will read the EGAVGA.BGI ..le and produce VGA resolution output.

To install the program, copy the program ..les and the appropriate graphics driver to a
directory on your hard disk (or you can run from a foppy, but it will take longer to load).

1.3 Running the programs

Any program can be run from any directory either by typing the complete path to the
program or having the program’s directory in your path statement. To run, just type the
program name, e.g., FIT, DFIT, etc., at the DOS prompt. If all is working well you should
see a display in the middle of your screen that reads (depending on the program)
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Severity Fit — Version 4.1
by Stuart Klugman
Copyright, June 1996
Do not distribute beyond your immediate
employment area
Press any key to continue

or

Discrete Fit — Version 2.1
by Stuart Klugman
Copyright, June 1996
Do not distribute beyond your immediate
employment area
Press any key to continue

or

Collective Risk — Version 3.0
by Stuart Klugman
Copyright, June 1996
Do not distribute beyond your immediate
employment area
Press any key to continue

The programs CRC and CRC2 do not use windows, the information appears directly on
the screen. Both are at Version 2.1, June 1996. The same holds for FREQADJ but it is at
version 1.1, June 1996. RUIN does use windows and is at Version 1.2, June 1996. Immediate
employment area is to be interpreted as the local o&ce where you work. For example, the
local o®ce of your consulting ..rm, or the cluster of buildings that are the home oCce of your
insurance company. Pressing any key at this point will start the program. The distribution
disk contains ..ve data sets: FIT1.DAT and FIT2.DAT contain grouped data and can be used
with FIT while FIT3.DAT contains individual data for FIT. DFIT1.DAT and DFIT2.DAT can
be used to try out DFIT.

1.4 Using the menus

The neutral state for each program (other than CRC, CRC2, and FREQADJ) has a window
in the upper left hand corner. For FIT and DFIT it displays the current model, parameter
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values, and negative loglikelihood value. For CR the neutral state window displays the
current frequency and severity models, parameter values, and coverage modi..cations. For
RUIN the input parameters are displayed. The message Select an option is at the bottom
of the window. Any letter (upper or lower case) entered at this time will cause a command
to be executed. The letter M will display the menu options. Command letters can also be
entered when the menu is being displayed. The option X terminates the program. A list of
the options for each program appears in at the end of the manual.
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FIT obtains maximum likelihood estimates for severity data that may be grouped or indi-
vidual (ungrouped). The data may be truncated from below and censored or truncated from
above. In all cases the model that is found is for losses starting at zero (ground-up). For
each ..tted model, values of the distribution function and the limited expected value can be
computed.

2.1 Data format

Data may be entered with the program or using any word processor that produces ASCII
output with no special characters. The DOS (5.0 or higher) editor (EDIT) is good for this
purpose. The MS-Windows editor Notepad will also work. To see what a data ..le looks like,
view any of the sample ..les using one of these editors, or have them listed on the screen by
typing type fitl.dat or have one printed out by typing copy prn fitl.dat.

Use option C to create a data set. You will be prompted for the name of the ..le that
will hold the data. If the ..le is to be saved on a directory other than the current one, the
complete path must be speci...ed.

2.2 Grouped data

For grouped data, at each subsequent prompt enter the lower limit for the interval, a space,
the number of observations in that interval, a space, and the average of the observations
in that interval (if you do not have the averages, you can so indicate and the program
will insert the midpoints). The averages are used only for computing the empirical limited
expected values; they have no infuence on the maximum likelihood estimates. The lower
limit entered on any line is both the lower limit for that interval and the upper limit for
the previous interval. For the purpose of maximum likelihood estimation it does not matter
which endpoints are included in an interval, but you should be consistent. The last line
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6 CHAPTER 2. FIT

should begin with the upper limit of the ..nal interval and then -10 for the other two entries.
If the ..nal interval has in..nity as its upper limit, enter -1 for the boundary.

If values above the ..nal grouping were possible, but just not observed in this sample, an
interval with no observations and in..nite upper limit should be included. The data set in
FIT1.DAT is an example. To repeat, if the ..nal interval entered has a ..nite upper limit,
the program will take this to mean that values above that limit were not possible (truncation
from above) as opposed to just did not occur in the sample.

If the data set is truncated from below (that is, there was a deductible), retect this by
simply having the ..rst interval begin with the deductible. Note that the program is expecting
the amount of the loss, not the amount paid after the deductible was subtracted.’

Once again, if the interval from 0 to x had no observations, but observations were possible,
that interval must be included. Starting with an interval from x>0 to y indicates that values
below x could not be observed.

Example 2.2.1 The following examples indicate some possibilities:

0 200 50
100 100 200
300 50 400
500 0 700

il §10 10

Observations above 500 were possible, there just were not any observed.

0 200 6
12 100 18
24 50 30
36 10 ;10

Observations above 36 were impossible (truncation from above). This might be data on
the time in months from policy issue to claim report. There were no policies issued more
than 36 months ago.

100 100 150
200 50 250
500 10 750

il §10 ;10

Values below 100 were impossible (truncation from below, as in a deductible). There may
have been a policy limit of 500 (censoring from above) with 10 observations at the limit. Had
there been a limit, the average of 750 for losses above 500 would not have been observable.

1The amounts paid after subtracting the deductible could be entered, but then the model found would
be for amounts paid, not for ground-up losses.
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For maximum likelihood estimation, the values in the third column are not used. Their only
purpose is to provide empirical limited expected values for comparison to the model values.
Had there been a limit, the value of 750 would be used to calculate the the empirical limited
expected value at in..nity (the sample mean) to compare to the model mean. With a policy
limit this comparison is not valid and so the value can be ignored.

You can also input data that is from various groupings. Terminate each grouping with
the entries xx -5 -1 where xx is the upper limit of the last group in that set (use -1 in
place of xx for in..nity). The data set FIT2.DAT is an example. There is one more feature
that can be incorporated into the data set. When there are multiple limits (for example)
the data can be easily entered if the original frequency tables were kept separate.

Example 2.2.2 Consider data collected from policies with two limits, 1,000 and 5,000:

0 100 50
100 50 300
500 60 750

1000 30 2000
il 5 il

0 30 50
100 20 300
500 25 750

1000 10 3000
5000 5 13000
il 110 il0

There were 240 losses on policies with the 1,000 limit and 90 losses with the 5,000 limit.

Example 2.2.3 Now suppose the two groups had not been kept separate. The data set would
then be entered as:

0 130 50
100 70 300
500 85 750

1000 10 3000
5000 5 13000
il i1 il
1000 30 2000
il 10 il0

There is now just one group with 320 losses. The -1 terminator in the second entry in
line 6 indicates that the group is unchanged, but it contains some overlapping intervals. If
there is truncation from above, this must be revealed by having the entry at the ..rst -1
be the truncation point. It should be noted that when there are overlapping intervals, the
empirical probabilities and LEV’s are adjusted so that they can be comparable.
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For option P the current model is utilized to provide the needed interpolation. When
graphing, the current model is also used, so if several models are to be placed on one graph
you should have what you think is the best model as the current model. The best results
are obtained if the maximum possible number of entries are presented prior to the ..rst -1
as was done in the above example.

The maximum number of lines is 500.

2.3 Individual data

For individual data, values can be entered via option C although this may be painful. The
data format is as follows (all numbers must be in ASCII code, which is easy to generate with
your spreadsheet or word processor).

Line 1 — The number -1, to indicate individual data follows.
Line 2 — 0 if the loss entries are not sorted, 1 if they are increasing.
Line 3 — The number of observations in the data set.

Subsequent lines — The loss (total, not the payment after subtracting the deductible),
followed by the deductible (0, if no deductible), followed by the limit (0, if no limit).
The three numbers may be separated by spaces or by a comma. If the limit is a
censoring limit (observations above the limit are included, but their value is unknown)
enter the limit as is. If the limit is a truncating limit (observations above the limit are
excluded) enter the negative of the limit. Any entries in the data set that are below
the deductible or above a truncating limit will be ignored.

The sample ..le FIT3.DAT is an example. The maximum number of data points is 3000.

To view the data set use option V. Errors can be corrected with option E. This is not
a complete editor, but does allow you to change, delete, or add an entry for grouped data.
For individual data any observation can be changed or an observation added. If major work
needs to be done it is better to use an ASCII word processor such as DOS-Edit or Windows-
Notepad. This can be done without leaving FIT via option O (DOS command, discussed
later).

2.4 Distributions

Option S allows you to select the distribution.
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2.5 Fitting the model

You must begin by specifying starting values for the parameters. Possible values for some one
and two parameter distributions can be found via option B. There is no guarantee that the
program will ..nd suitable (or even legitimate) values. If the algorithm (method of moments
or percentile matching, depending on the distribution) produces illegal parameter values,
no starting values will be provided. Sometimes the parameters are legitimate, but strongly
inconsistent with the data, causing the likelihood to be impossible to compute. This will
be indicated by a negative loglikelihood of 1E100 (overfow), 1E200 (undertow) or 1E300
(both). In either case, alternative starting values must be created by you, using option N.
For three and four parameter models, ..t a two or three parameter member of the same
family that is a special case. Option B will then select the parameters from your earlier ..t
and then set the additional parameter equal to 1. The Appendix can help you identify the
special cases.

To enter your own starting values, use option N. You must have already selected a dis-
tribution with option S. This option can be used at any time to change the current iterate.
If you are desperate for starting values try setting  equal to the sample mean and all the
other parameters equal to 2.

Two methods of doing the minimization (of the negative loglikelihood) are available. The
..rst is the method of scoring. It is a modi..cation of the Newton-Raphson method for ..nding
the roots of an equation. Option | will perform one iteration of this method. The new and
old loglikelihood values will be displayed so you can see if the procedure is converging. This
method requires good starting values, but when it converges, it does so quickly. Continue
Iterating until you are satis..ed with the results. If the method yields illegal parameter values,
the new iterate will not be accepted and you must either get new starting values or switch to
the simplex method. The scoring method is only approximate when models whose cumulative
distribution function involves the incomplete gamma or beta functions are used. The ..nal
iterations must be done by the simplex method. Also, the variances and correlation matrices
that are produced are approximate because they are based on approximate derivatives. The
distributions for which this is the case are the gamma (5), inverse gamma (6), generalized
Pareto (11), transformed gamma (12), inverse transformed gamma (13), and transformed
beta (14). For the inverse Gaussian distribution (1), exact derivatives can be written in
terms of the standard normal distribution function. Because this must be approximated,
the scoring method will converge quickly, but to a slightly incorrect result. As with the
previous distributions, it is best to ..nish with the simplex method. The scoring method is
not available for individual data.

The other method is the simplex method. Use option L to initiate it. Follow the in-
structions. An initial simplex with values increased by 5 percent seems reasonable, but 10
to 20 percent may be more appropriate if your starting values are not good. The better you
believe your starting values to be the smaller the percent that can be used. At each iteration
the new value is better than at least one of the previous values. If the scoring method is
available, once the simplex method appears to have gotten close to the solution, it may be
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a good idea to switch.

As a ..nal check, option G will compute the negative loglikelihood at a grid of values
surrounding the current parameter value. You specify the percentage adjustment to make
to each value and the output places a (*) next to each value that is better than the one at
the current point.

You should be aware that maximum likelihood estimates do not exist for all models for
some data sets. It may be that the maximum occurs when two or more parameters go to
zero and/or in..nity. So it is a good idea to watch the parameter values as you iterate to see
if this is happening. This usually means the model is a poor choice anyway or that a model
with fewer parameters will do just as well. A word of warning — when the non-y parameters
in the three and four parameter members of the transformed beta family get large (in the
hundreds or more) it is likely that you have not converged (and won’t) and the program
will spend a log time computing under option P as it tries to compute various quantities via
nearly in..nite sums.

2.6 Results

Option R lists all models ..tted during the session along with the most recent loglikelihood
values. If the chi-square goodness-of-..t test has been done (automatic with option P with
grouped data) this command will also present the chi-square test statistic, the degrees of
freedom and the p-value. For grouped data option P lists more details about the current
model, including variances, a correlation matrix, limited expected values, and a chi-square
goodness-of-..t test. For the latter, the individual contribution of each cell to the chi-square
test statistic is presented. In the presentation the number is signed to indicate if the expected
count was larger (j) or smaller (+). The program groups cells together to ensure that
expected counts always exceed 5. Cells which have been grouped have an entry of -1000
displayed as the *“contribution” to the test statistic. The number prior to the string of
-1000’s is the contribution for the grouped cells. For individual data, option P provides
only the parameter values, negative loglikelihood, variances, and the correlation matrix. To
obtain the other items, use option U to group the data. You can then use the parameters
as previously set and option P to display the results for the grouped version. When option
U is used, the grouped data are placed in a new ..le. All previous parameters and ..ts are
retained, but to save them as connected to the grouped data ..le, option K must be re-run
with a new ..le name for the saved results.

As you change from one model to another (via option S) the program remembers the
latest parameter values from all previous models. The same output that is given by R plus
the parameter values can be saved to a ..le. This ..le can also be read in to allow a ..tting
session to be continued at a later time. Use option K to save or restore a session. It is a
good idea to save your session often. FIT has very little in the way of error trapping,
so if you or the program bomb, all your previous ..ts will be lost. The ..le FIT1.SAV contains
the results of ..tting several distributions to the data in FIT1.DAT.

Option F gives T(x), F(x), and E[X; x] at a speci..ed value of x. It also gives the mean
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and standard deviation if they exist. This procedure ignores any truncation or censoring
points that were in the original data set and computes values as if there was no deductible or
limit. This option also allows you to create a table of values for F (x) and E[X; X] provided
the entries are arithmetically spaced.

2.7 Plots

Option T creates graphs. This can only be done for grouped data. (Option U can do the
grouping for individual data.) The ..ve options are:

1. Histogram and ..tted pdf for the current model.

N

. Histogram and ..tted pdf’s for the current model and up to three other models.
3. Empirical and ..tted cdf for the current model.

4. Empirical and ..tted LEV for the current model.

5

. Empirical and ..tted LEV’s for the current model and up to three other models.

You will also be given the opportunity to limit the presentation to a speci..ed range of
loss values. This lets you “blow-up” the plot to view its most important features. The lower
and upper loss limits must be group boundaries. When asked if you want a two-color plot
a “Y” response will produce a plot with white lines on a black background. This is best
for notebooks, gray-scale projectors, or if you will be sending the graph to the printer. The
quality of the plot will depend on the graphics capabilities of your machine. After viewing,
hit any key to continue. Warning - this procedure will not work if the range of loss values
contains more than 150 groups.

See the end of the manual for information on printing the graphs.
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Chapter 3

DFIT

DFIT ..nds maximum likelihood estimates for discrete data. All of the models assume that
probabilities are associated with non-negative integers. Some of the distributions assume
zero is not a possible value.

3.1 Data format

DFIT requires a ..le containing the sample data. Data may be entered with the program or
using any word processor that produces ASCII output with no special characters. Try using
your word processor to read the ..le DFIT1.DAT (or just type type DFIT1.DAT) to see what
a data set looks like.

Use option C to create a data set. You will be prompted for the name of the ..le that will
hold the data. If the ..le is to be on another directory or disk you must give the complete
path. At each subsequent prompt, enter the number of times that value occurred in the
sample. All of the distributions used in this program assume that the lowest possible value
for the random variable is either 0 or 1. If 0 is not a possible value, you still must enter 0
as the number of times 0 was observed. When 0 is impossible, only models in the AB1 class
“without zeros” should be used. To indicate that no more data will be entered, enter -10.
The program assumes that the last entry prior to the -10 represents the count for that value
and all larger values. The only exception is for the binomial distributions where the value of
m is input by the user. It is assumed that the number of observations for values larger than
the last entry up through m are all zero. If all of the values were recorded as seen, then the
last entry prior to the -10 should be zero. This is the case for the two sample sets.

It is also possible for data to be grouped. In that case enter the frequency for the lower
limit for the group and enter -1 for the frequency for other values in that group. However,
the program requires that the ..rst group contain only 0 (that is, the ..rst group cannot be
0-3, for example). Other groups can be any size.

13
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Example 3.1.1

3
6
7

1
1
1
1

5
1

3
il0

The actual observations would be 3 at 0, 6 in the interval 1-3, 7 in the interval 4-6, 5 in
the interval 7-8, and 3 in the interval 9-1..

To view the data set, use option V. Errors can be corrected with option E. This is not
a complete editor, but does allow you to change, delete, or add an entry. If major work
needs to be done it is better to use a word processor. You can run another program without
leaving DFIT via option O.

To use a data set, select it with option D. You will be prompted for the ..le name. The
complete path needs to be speci..ed. If you are unsure of the ..le’s location, use option O to
view your directories.

The data set can have a maximum of 500 entries.

3.2 Distributions

Option S allows you to select the distribution.

3.3 Fitting the model

Fitting is done exactly is with FIT. The scoring method is always available and is a good
choice unless the starting values are poor. If useful starting values are hard to obtain,
consider setting any _ or parameter to the sample mean and all other parameters to 1.

3.4 Results

Option R lists all models ..tted during the session along with the most recent loglikelihood
values as well as results from the chi-square goodness-of-..t test for those models that have
been examined with option P. Option P lists more details about the current model, including
a correlation matrix. As you change from one model to another (via option S) the program
remembers the latest parameter values from all previous models. The same output that is
given by R along with the parameter values can be saved to a ..le. This ..le can also be
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read in to allow a ..tting session to be continued at a later time. Use option K to save or
restore a session. It is a good idea to save your session often. DFIT has very little
in the way of error trapping, so if you or the program bomb, all your previous ..ts will be
lost. DFIT1.SAV contains the results of some ..ts using DFIT1.DAT. Option F will allow you
to compute the exact and cumulative probabilities for any value. It also gives the mean and
standard deviation for the model.

3.5 Plots

Option T allows you to view the results of the estimation. There are two options. They are

1. Bar charts for the data and the current model.

2. Bar charts for the data, for the current model, and for up to three other models.

Except for the smaller number of options, all else is the same as for FIT.
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Chapter 4
CR/FREQADJ/CRC/CRC2/RUIN

The program CR computes probabilities for the model S = X;+¢¢¢+Xy where N is a random
variable called the frequency and the X; are identically distributed random variables called
the severity. It is assumed that all the random variables are independent. The frequency
model can be selected from any of those available in the program DFIT and the same
parameterizations are used. The severity model can be any of those used in the program
FIT or it can be an arbitrary distribution created by the user. The severity must be a discrete
distribution with probabilities at equally spaced values. Because the distributions in FIT
are all continuous, the program creates a discrete distribution that is a close approximation.
The user can decide what the spacing should be.

The severity distribution may be modi..ed by imposing a deductible, limit, and or coin-
surance. The same is true for the aggregate distribution. In addition to the probabilities,
the program also produces limited expected values and limited expected squared values for
the aggregate distribution.

The program FREQADJ is used to change the parameters of the frequency distribution
in order to retect modi..cations due to truncation.

The programs CRC and CRC2 are general purpose convolution programs. CRC forms the
convolution of two identical distributions while CRC2 forms the convolution of two dicerent
distributions.

The program RUIN computes ..nite time, discrete process ruin probabilities.

4.1 Distributions

Option F allows you to select the frequency distribution. A menu appears ogering the various
choices. After your choice is made you will be prompted for the parameter values. The ..nal
option is called “Exactly One Claim” and provides a frequency distribution for which the
probability of one claim is 1. This makes the output aggregate distribution the same as the
(modi..ed) severity distribution.

Option S allows you to select the severity distribution. A menu appears ozering the
various choices. The last choice is for a user speci..ed distribution. If this one is selected,

17
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you will be prompted for the name of a ..le holding the values for your distribution or you
will be given the opportunity to create a ..le. The ..le must be in ASCII form. The ..rst
line should have the number of severity values minus 1 (this must be no more than 6500).
The second line should have the true probability at zero. This is important if the severity
distribution is a discretized version of a continuous or mixed distribution. Subsequent lines
each have two numbers. The ..rst is the loss amount and the second is the probability. The
loss amounts must be evenly spaced, but need not start at zero. The ..rst of these entries
need be zero (that is, probability may start at any value), but if the ..rst entry is zero, it
should be at least as large as the probability assigned to be exactly at zero. This is the same
format that is required for input to programs CRC, CRC2 and RUIN.

When initially selected, it is assumed that the severity distribution covers losses from 0
to an upper limit (the last value in the discretized version). A deductible, limit (censoring
or truncating), and/or coinsurance may be imposed prior to the discretization. When the
program does the modi..cations, the severity variable is always on a per payment basis. There
are two kinds of deductible, the ordinary deductible and the franchise deductible. With both
deductibles, when the loss x is below the deductible d, nothing is paid. However, when the
loss is above d the ordinary deductible pays x j d while the franchise deductible pays the
full amount x. The franchise deductible is also useful when a ..tted model is being used for
severities above some amount and empirical data below.

With regard to the policy limit, it should be noted that the amount entered is the limit
prior to the imposition of the deductible or coinsurance. The entered limit is not the
maximum amount payable per claim. For example, with a deductible of 100, a coinsurance
of .8, and a limit of 1,000, a loss of 700 results in a payment of :8(700 j 100) = 480 while a
loss of 1,100 results in a payment of :8(1,000 j 100) = 720. The maximum payment is 720.

Once the distributions have been selected, the severity probabilities may be viewed by
using option V. The values can be placed on the screen, printer, or be written to a ..le.

There are two methods available for performing the discretization. The method of round-
ing preserves total probability while the mean-preserving method ensures that the discretized
distribution has the same mean as the original continuous model.

Example 4.1.1 The severity distribution is Pareto (® = 3, p = 10) and the frequency for
ground-up claims is zero-modi..ed geometric (po = :6, = 2). A discretization is desired
with a span (interval) of 2. The ..rst six discretized values, by the method of rounding are:

fo Pr(X - 1) =:248685
f1 Pr(1<X - 3)=:246149

f, Pr(3< X - 5)=:158870

fs Pr(5< X - 7)=:092755

f, Pr(7<X -9)=:057748
- 11) =:037814

f5 Pr(9 <X
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Now suppose an ordinary deductible of 4 is applied prior to the discretization. This gives
the probability of a particular amount being paid given that a payment is to be made. The
results are

go Pr(4 <X - 5)=Pr(X >4) =:186963

g1 Pr6b<X - 7)=Pr(X >4) =:254519

g2 Pr(7<X - 9)=Pr(X > 4) =:158460
- 11)=Pr(X > 4) = :103762

gz Pr@<X

If a limit of 10 (6 above the deductible) and coinsurance of .75 are to be applied the only
change is to concentrate all of the excess probability at g;. That is, g3 = :400058.

For the last two cases, the frequency distribution must be modi..ed to retect the per
payment basis. Using FREQADJ, the new zero-modi..ed geometric parameters are pg =
1747049, = :728863.

4.2 Computing and printing the probabilities

Aggregate modi..cations can be imposed by selecting option A. This will not acect the
recursions as the modi..cations are imposed only when option P is selected for viewing the
results. Recursions will be carried out to the earliest of 3000 values, the ..nding of all but
about one hundred-millionth of the probability, or a value preset when option C was invoked.
So the aggregate modi..cations can be changed and their esects noted without redoing the
recursions (option C). However, if you know that there will be an aggregate limit that will
not be raised, you can save time by only doing recursions to just a little bit past this limit.

Option C asks the program to compute the probabilities for the collective risk model. You
will be prompted for the starting value for recursions (see the discussion below on modifying
the recursions). If you enter zero, ordinary recursions giving true probabilities will be done.
You can also enter the aggregate amount at which aggregate loss calculations are to stop. If
you enter -1 the program will terminate on its own, when either .99999999 of the probability
has been found or 6500 values have been set. You should always select -1 when recursions
start at a value above zero.

Output is always computed at the same spacing as used for the severity distribution. This
can cause some problems when the expected frequency is high. For example, a spacing of 5
may work well for a severity distribution, creating 500 intervals (so nearly all the probability
is assumed to be below 2,500). If the expected frequency is 100 claims, this would require
perhaps 25,000 intervals of width 5 for the aggregate distribution, well beyond the memory
of the program. To solve this problem there are two possible approaches.

Begin the ..rst method by running CR with the expected frequency divided by a power
of 2 (2, 4, 8, etc.) to make it reasonable. For the Poisson or any Poisson-x distribution,
divide the Poisson parameter _ by this number. For the negative binomial, or any negative
binomial-x distributions, divide the value of r by this number (recall that the geometric



20 CHAPTER 4. CR...

distribution is just another negative binomial distribution, with r = 1). For the binomial
distribution, divide m by this number (the result must be a whole number). Obtain the
aggregate distribution and when complete, write the results to disk using the option that
allows for output suitable for input to the convolution program. Then run CRC using this
..le as input. The output will be the convolution of the aggregate distribution with itself.
The output can be written to disk in a format suitable for re-input to CRC or in a form that
matches the output from CR. This process must be repeated as many times as the power of
2 that was used (for example, if division was by 8, run CRC 3 times).

The program CRC2 is a general purpose convolution program that produces the convolu-
tion of two dizerent discretized distributions. An example would be two separate aggregate
distributions for two lines of business, each produced by program CR. Input is in the same
format as for CRC.

The second method is to start the recursive calculations at a value higher than zero.
This would be appropriate if the high frequency has pushed the probabilities well above
zero. A reasonable place to start is four to six standard deviations below the mean. The
program temporarily assigns a probability of one to this value and then proceeds recursively.
Recursions continue until the allotted 6,500 spaces are used or the probabilities become
relatively small. Once the recursions are completed the probabilities are rescaled to add
to one. The major drawback to this approach is that you cannot be sure that all of the
probability has been accounted for when the recursions stop (when recursions start at zero
the true probabilities are obtained and so the remaining probability can be placed at the
last value). The program will provide a warning when it appears that there is a problem.

Option P will print the cumulative probabilities, the limited expected values, and the
limited expected squared values. You have the option of printing the results on the screen,
on the printer, or to a ..le. As noted above, you can also write the output to disk in a form
suitable for input into CRC, CRC2, or RUIN. This form is also suitable for input as a user
speci..ed severity distribution for CR itself. Finally, you also have the option of printing a
table of percentiles.

Example 4.2.1 Use program CR to obtain the aggregate distribution of losses from the
model described in the previous example. Impose the individual ordinary deductible of 4,
censoring limit of 10 and coinsurance of .75. The output shown below is from option P with
output written to disk and then imported to this word processor.

Deductible applied prior to discretization:
Frequency: Truncated Geometric with zero
Beta = 7.2886300E-0001

p0 = 7.4704900E-0001

Severity: Pareto

Alpha = 3.0000000E+0000

Theta = 1.0000000E+0001

Discretization interval = 1.5000000E+0000
Discretization method: Rounding
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Individual ordinary deductible: 4.0000000E+0000
Individual censoring limit: 1.0000000E+0001
Individual coinsurance: 0.750000

No aggregate deductible

No aggregate limit
Aggregate coinsurance: 1.000000

AggLoss
0.00
5.00

10.00
15.00
20.00
25.00
30.00
35.00
40.00
45.00
50.00
55.00
60.00
65.00
70.00

PDF
0.498032667
0.112863233
0.042364652
0.009977457
0.002586018
0.000636661
0.000155213
0.000038508
0.000009282
0.000002244
0.000000555
0.000000134
0.000000032
0.000000011
0.000000000

Mean = 1.1733

CDF
0.747049000
0.916343849
0.979890827
0.994857012
0.998736040
0.999691031
0.999923851
0.999981614
0.999995536
0.999998902
0.999999735
0.999999936
0.999999984
1.000000000
1.000000000

LEV
0.0000
0.8694
1.0978
1.1548
1.1688
1.1722
1.1730
1.1732
1.1733
1.1733
1.1733
1.1733
1.1733
1.1733
1.1733

LEV2
0.0000
3.7214
6.9186
8.2800
8.7539
8.9035
8.9483
8.9612
8.9648
8.9658
8.9661
8.9662
8.9662
8.9662
8.9662

21

Std. Dev. = 2.7549

4.3 FREQADJ

This program is a small utility that can be used to adjust the frequency distribution. This
usually happens when the original frequency distribution is based on data from one de-
ductible and/or truncating limit and the discretized distribution is appropriate for a dizer-
ent deductible/limit combination. The program asks for the current frequency distribution,
the current severity distribution, the current deductible/limit combination and the new de-
ductible/limit combination. The output is simply the new parameters for the frequency
distribution. If needed in the middle of running program CR, option O can be used to run
this program and then return to CR.

4.4 Ruin

This program uses convolutions to compute ..nite time ruin probabilities for a discrete time
model. The input is the initial surplus, the annual premium (assumed paid at the beginning
of the year), the interest rate, and the ..le containing the aggregate loss distribution. The
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latter should be a ..le produced by CR, CRC, or CRC2 using the output for convolutions
option. It is assumed that all claims are paid at the end of the year. The program will then
generate the distribution of surplus after a given number of years (option R allows you to
select the number of additional years to run the model). The output (view with option P)
is the probability of being ruined within that many years as well as the mean and standard
deviation of surplus, given that ruin has not occurred.



Chapter 5

Comprehensive example

The format of this example is probably unlike any practical setting. It has been selected in
order to illustrate many of the capabilities of these programs. The numbers themselves are

made-up and are not an attempt to mimic any real data.

The problem is to learn about aggregate losses on family dental coverage. Three data
sets are available. The ..rst represents losses on small, individual claims. For each family
the annual aggregate total of losses below 250 was recorded. That is, individual losses above

250 were excluded from the total.

Amount of loss

Number of losses

0-250
250-350
350400
400450
450-500
500-600
600-700
700-800
800-1,000
1,000-1,500
1500-

71
327
167
123

97
128
103

67

68

25

1

Individual losses above 250 were recorded individually. There were 384 such losses which

were grouped as follows

23
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Amount of loss

Number of losses

250-500
500-750
750-1,000
1,000-1,500
1,500-2,000
2,000-2,500
2,500-

251
80
25
15

8
3
3

The ..nal piece of information is data on the number of large (excess of 250) claims by

one family in one year:

Number of losses

Number of families

0

~No ok wWwbN Bk

95
130
100

38

16

3
1
1

The three data ..les that correspond to this information are available as MANL1.DAT,

MANZ2.DAT, and MAN3.DAT respectively.

5.1 Models for the three data sets

5.1.1 Model for aggregate small losses

The ..rst step in the ..tting process is to use FIT to obtain a model for the amount of
aggregate small losses in one year. After ..tting all possible models (a few did not converge),
the best models with each number of parameters were selected (the four parameter model
did not converge). In each case the model with smallest negative loglikelihood was also the
model with the smallest A?-value for the goodness-of-...t test.

No. param. Model -loglikelihood chi-square df p-value
1 Exponential 3100.94 1173.14 9 near O
2 Inverse gamma 2506.30 3298 7 near0
3 Inverse trans. gamma 2505.32 3199 7 nearO
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The likelihood ratio test indicates that the inverse gamma model is an improvement over
the exponential (twice the dicerence of the negative loglikelihoods is greater than 3.84, the
5% critical value with one degree of freedom), while the inverse transformed gamma model
IS not an improvement over the inverse gamma. Figure 5.1.1 shows that the inverse gamma
model is satisfactory, even though it does not pass the goodness-of-...t test.

HIZTOGRAM and PDF

[[nverse [EEToTy - pe—

30

25

20

Density
15

10

o 200 400 |00 800 1000 A1=200 1400 1500
»x 100

Figure 5.1.1: Inverse gamma distribution
The parameter estimates are ® = 6:73021 and p = 2692:53. Further information about
this model, including standard deviations of the estimators can be found with option P.

5.1.2 Model for the amount of individual large losses

Using program FIT, a number of models were successfully ..t to the data. The best ..tting
models with each number of parameters are summarized below.

No. param. Model -loglikelihood chi-square df p-value
1 Exponential 427.08 982 2 .0074
2 Inverse Weibull 411.15 1.75 3 .6270
3 Burr 411.01 137 2 5032

Identical reasoning to that from the previous subsection indicate that the inverse Weibull
is the distribution of choice. This one also passes the goodness-of-..t test and had the highest
p-value of any model. The quality of the ..t is evident from Figure 5.1.2

The parameters for the selected inverse Weibull model are ; = 2:38148 and y = 317.676.
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HISZTOGREAHM and PDFE
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Figure 5.1.2: Inverse Weibull distribution

5.1.3 Model for the number of large losses per family

The data were entered into DFIT. Of the models which converged, the best were

No. param. Model -loglikelihood chi-square df p-value
1 Poisson 574.97 134 4 .8549
2 Poisson-Inv. G. 574.96 140 3 .7066
2 Polya-Aeppli 574.96 139 3 7077
3 Poisson-ETNB 574.88 153 2 4646

Two two-parameter models are presented as one had the best loglikelihood number
(Poisson-inverse Gaussian, in the third decimal place) and the other had the best chi-square
value. However, the likelihood ratio test indicates that the Poisson model cannot be re-
jected in favor of one with more parameters and as well, it has the highest p-value for the
goodness-of-..t test.

The parameter is , = 1:39583.

5.2 A model for aggregate losses

5.2.1 Aggregate small losses

These have already been modeled with the inverse gamma distribution. To use this distri-
bution we need only discretize it. This can be done with program CR, entering the inverse
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gamma as the severity distribution, discretizing with no modi..cations (a span of 5 was used
with the method that matches the ..rst moment), selecting a frequency of exactly one claim,
hitting C to make the transfer, and then using option P to write the distribution to disk in
a format that can be used for later input.

5.2.2 Aggregate large losses

The severity for individual large losses is inverse Weibull. However, this is a ground-up
distribution and we want to include only those losses in excess of 250. This can be done
with a franchise deductible of 250. Because the model for the number of claims was based
on those in excess of 250 there is no need to adjust the frequency distribution. The results
are then saved to disk in a format that can be used for later input. A span of 25 was used
with the method that matches the ..rst moment.

5.2.3 Total aggregate losses

This is just the convolution of the two distributions found previously. This is done with
program CRC2. The results are then saved to disk and then re-read into program CR with a
frequency distribution of “exactly one claim.” Then output items of interest can be obtained.
For this problem the following moments and percentiles were requested:

Mean 1,230
Std.Dev. 969
50th pctile 1,032
75th pctile 1,574
90th pctile 2,241
95th pctile 2,765
99th pctile 4,269

Modi..cations can then be entered as aggregate, not individual, modi..cations. This was
done here to evaluate the layer from 2,500 to 4,000. The mean turns out to be 48 and the
standard deviation 224.
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Miscellaneous

6.1 DOS Command

Option O lets you execute a DOS command without leaving the program. After selecting
this option you can either enter the DOS command (e.g. “DIR”) and then be returned to
the program as soon as execution is completed, or hit -return- and be placed back in DOS
(for example, to do word processing) and then be returned to the program only when you
type EXIT in response to a DOS prompt (>).

29
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6.2 Menu Options

6.2.1 FIT and DFIT

Option | Action

Starting values

Create a new data set

Read in a data set

Edit a data set

Functional values from the current model
Likelihood values from a grid around the current values
One iteration of the scoring method

Save or restore the results of a ..tting session
Simplex minimization

Display this menu

New starting values

DOS command

Print results for the current model
Summarize results for all models used

Select a model

Plot PDF, CDF, or LEV

Group individual data (FIT only)

View the data

Terminate the program

X<CHuwnUvoOoOZZrX—-—oOmnmmooOow

6.2.2 CR

Option | Action

Input aggregate modi..cations
Compute aggregate probabilities
Select the frequency distribution
View this menu

DOS command

Print results

Select the severity distribution
View the severity probabilities
Terminate the program

X< »mUowoZZToO >




6.3. PRINTING 31

6.2.3 RUIN

Option | Action

Get aggregate distribution
View this menu

DOS interface

Print results

Compute ruin probabilities
Select initial values
Terminate the program

X<L<XTOTWUVOZI>

6.3 Printing

There are four ways to print the graphs.

(@) The DOS 5.0 and above graphics command will work with various printers. If you
have one, run the graphics command prior to running FIT or DFIT. Hitting the PrintScreen
key (or perhaps Shift or Alt-PrintScreen) will cause the graph to be printed.

(b) There are a number of commercial screen capture routines. These can be used to
write your graph to disk in some format that can be read by your word processor. You can
then use your word processor to edit and print the graph.

(c) The distribution disk contains two programs, LIJPS.EXE and LIJPSRUN.EXE. Both
are designed to enable you to print the contents of a graphics screen on an HP Laser Jet
or Desk Jet printer. They will not work with a Hercules graphics card, nor will they work
with Super-VGA. They will work with CGA, EGA, and regular VGA cards (Even if you
have Super-VGA, | believe FIT and DFIT only use the resolution of regular VGA, so these
programs will probably work anyway.) When running, all you need to do is hit PrintScreen
(or Shift or Alt-PrintScreen). These programs will work with any screen, not just those
produced by FIT and DFIT.

The program LJPS is a memory resident program. Run it by typing LIPS at the DOS
prompt. Once run, it will always be the program by which screens dumps are handled. There
is no way to unload this program.

LJPSRUN is not memory resident, but instead invokes a secondary DOS session. Run it
by typing LIPSRUN at the DOS prompt. Later on you may type EXIT at the DOS prompt
to cancel the program and the secondary DOS session. A more useful way to use this
program is to type LIJPSRUN FIT or LJPSRUN DFIT at the DOS prompt. This will create
the secondary session, run the print screen handler, and then run the requested program.
When the requested program is terminated, the secondary session will be ended and the
print screen handler unloaded.

Both programs assume your printer is connected to LPT1, the ..rst parallel printer port.
If your printer is connected to LPT2 or LPT3, type LIPS -p2 or LIPS -p3 when running
the ..rst program or LJPSRUN -p2 or LIPSRUN -p3 when running the second one. You may
still append a program name afterward when running LIJIPSRUN.
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(d) If you are using Windows 3.0 or higher in enhanced mode, the following is available.
First, run (D)FIT from within Windows. The default PIF works just ..ne. So just call the
program using the RUN command from the FILE menu in either program manager or ..le
manager. Create the desired graph (for best results, use the “two colors” option when making
the graph and then hit Alt-PrtScr to copy the screen to the Windows clipboard. Then exit
(D)FIT or at least switch to the Paintbrush program. Be sure the window is maximized.
Choose Image Attributes from the Options menu and change the size of the picture to the
resolution of your screen, using pels as the units. For example, with EGA use 640 and 350.
From the View menu choose Zoom Out. From the Edit menu choose Paste. Cross hatches
should appear. Place the cross-hair cursor in the upper left corner of the drawing area and
click the left mouse button. The picture should now appear. Choose Zoom In from the View
menu.

The colors must now be changed. The general routine is to select the old color on the
color palette and click the left mouse button. Select the new color on the color palette and
click the right mouse button. Then double click the color erase tool (the eraser on the left)
to change every occurrence of the old color to the new color. Because the graph takes up
more room than can be displayed, you will have to click the horizontal scroll bar to reveal
the rest of the picture and double click the eraser tool to change the rest of it. Keep changing
colors until you have black lines on a white background (unless, of course, you have a color
printer, in which case you would have been printing already).

At this point you can print the graph directly from Paintbrush, or save it in PCX or
BMP format for later importation to any program that recognizes these formats. Or, you
can copy the graph back to the clipboard for pasting into other Windows applications (like a
word processor) by ..rst choosing Zoom Out from the View menu, selecting the pick tool (the
scissors with a rectangle attached), placing the cross-hair cursor on the upper left corner of
the picture, pressing the left mouse button, dragging the cursor to the lower right corner to
outline the entire graph, releasing the left mouse button, and then choosing Copy from the
Edit menu.



Appendix A

An Inventory of Continuous
Distributions

A.l1 Introduction

Descriptions of the models are given below. First a few mathematical preliminaries are
presented that indicate how the various quantities can be computed.
The incomplete gamma function?® is given by

o= L Cereitr  @>0 0
i(®X)= et dt; > 0; >
01 "
Zl
with j(®) =  t®ileitdt; ® > 0:
0

When ® - 0 the integral does not exist. In that case, de..ne

V4 1
i(@®)G@®;x) =  t%ileitdt; x>0
X

Integration by parts produces the relationship

®n i X -
i@6@x) = 1 5 + 1O D15
® ®
which allows for recursive calculation because for ® > 0, j(®)G(®;x) = j(®)[1 § j(®;X)].
When ® is zero or a negative integer, this recursive formula requires the evaluation of
Z3
i(0)G(0;x) =  tileitdt = E;(X)
X

R
1Some references, such as [1], denote this integral P (®; x) and de..ne j (®;x) = Xl t®ileitdt. Note that
this de..nition does not normalize by dividing by j(®). When using software to evaluate the incomplete
gamma function, be sure to note how it is de..ned.
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which is called the exponential integral. A series expansion for this integral is
Sk (- 1)y
E,(x) = 5721566490153 j logx j . A X,
a1 N(n!)

When ® is a positive integer, the incomplete gamma distribution can be evaluated exactly
as given in the following Theorem.

Theorem A.1.1 For integer ®,

S wigix
i(@®x)=1j :

o 1!

R
Proof: For® =1, j(1;x) = Jeitdt =1 j ei* and so the theorem is true for this case. The

proof is completed by induction. Assume it is true for ® = 1;:::;n. Then
14x
in+1x) = — t"eitdt
1. uo - z q
= — jtheit™ + nthileitgt
n! 0 0
5 b
= o ixeT +inx)
xNeix DR xlgix
= it il
n! j=o I
—_ 1 - Xxjeix.
= 1j z -

The incomplete beta function is given by

Z
_ i@+b)Zx -
a;b;x:—'(a+ t2il(1 5 ildt; a>0 b>0 0<x<l
( ) i@i®) o it

and when b < 0 (but a > 1+ [jb]) repeated integration by parts produces

ajl - b

i@ib) (abx)= ji(a+h) #
(a i D)xaiz(1 j x)o+? e

b(b + 1) 4

(aj1)tee(aj r)xiril(l j x)o*r
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@ilett@iril) ,
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where r is the smallest integer such that b+r + 1 > 0. The ..rst argument must be positive
(thatis,a jrjl=>0).

Numerical approximations for both the incomplete gamma and the incomplete beta func-
tion are available in many statistical computing packages as well as in many spreadsheets as
they are just the distribution functions of the gamma and beta distributions. The following
approximations are taken from [1]. The suggestion regarding using dicerent formulas for
small and large x when evaluating the incomplete gamma function is from [3]. That refer-
ence also contains computer subroutines for evaluating these expressions. In particular, it
provides an exective way of evaluating continued fractions.

For x - ® + 1 use the following series expansion

x®eix X X"

1(®) = 7755 o ®@ + 1) ¢6¢(®+ n)

while for x > ® + 1 use the following continued fraction expansion

1 ® x®eix 1
1 I( 1X)_ i(®) X+1+ 1i® .
+ 219 _

7
I+ 33w

The incomplete gamma function can also be used to produce cumulative probabilities from

the standard normal distribution. Let ©(z) = Pr(Z - z) where Z has the standard normal

distribution. Then for z _ 0, ©(z) = :5 + j(:5;2?=2)=2 while for z <0, ©(z) = 1 j ©(j2).
The incomplete beta function can be evaluated by the following series expansion

i(a+h)x31 j x)°
»aj(@i)
£ 141 (@rb@+b+1)tei(@a+b+n
n=0 (a+1(@a+2)ttt(a+n+1)

“(arhyx) =

n+1

The gamma function itself can be found from

logi(® = (® j 1=2)log® j ® + log(2¥:)=2
41 - 14114 1 691
120 b 36083 ' 126005 1 1680@7 1188®96 11| 360;360011

L1 o 3617 43867 - 174
156013 | 122:200055 = 244188027 N 125,400019

For values of ® above 10 the error is less than 1071°. For values below 10 use the relationship
log j(®) =log j(®+1) j log®

The distributions are presented in the following way. First the name is given along
with the parameters. Next the density function (f(x)) and distribution function (F (x)) are
given. These are followed by the kth moment, the kth limited expected value (when there
is simpli..cation, the formula is given for integer k) and the mode. These are followed by
the derivatives of the distribution function with respect to the parameters. For distributions
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involving the incomplete gamma and beta functions some of these derivatives are di¢cult to
compute and so an approximation should be used. Finally, for some distributions formulas
for starting values are given. Within each family the distributions are presented in decreasing
order with regard to the number of parameters. The Greek letters used are selected to be
consistent. Any Greek letter that is not used in the distribution means that that distribution
is a special case of one with more parameters, but with the missing parameters set equal to
1. Unless speci..cally indicated, all parameters must be positive.

Except for two distributions, infation can be recognized by simply infating the parameter
U. That is, if X has a particular distribution, then cX has the same distribution type, with all
parameters unchanged except | is changed to cu. For the lognormal distribution,  changes
to * + log(c) with % unchanged while for the inverse Gaussian both * and p are multiplied
by c.

For several of the distributions, starting values are suggested. They are not necessarily
good estimators, just places from which to start an iterative procedure to maximize the
likelinood or other objective function. These are found by either the methods of moments
or percentile matching. The quantities used are:

1X 1
Moments: m = — X t=— X
i=1 n;

Percentile matching: p = 25th percentile, ¢ = 75th percentile

For grouped data or data that have been truncated or censored, these quantities may have to
be approximated. Because the purpose is to obtain starting values and not a useful estimate,
it is often succient to just ignore modi..catoins. For three and four parameter distributions
starting values can be obtained by using estimates from a special case, then making the new
parameters equal to 1. An all-purpose starting value rule (for when all else fails) is to set
the scale parameter (i) equal to the mean and all other parameters equal to 2.

A.2 Transformed beta family

A.2.1 Four parameter distribution
A.2.1.1 Transformed beta - ®;; °;¢

i@+¢)  °(x=p)

f0) = @i XL+ o T
R G V)
FX) = (;;®;u); U_W
e = WIEHENIOIKED, oo g

i(®)i() ’
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Wi +k=)i@ i k=°)—

EI(X A% = S (¢ +k=21® i k=>u) + X [L i FOOL k> ¢
- -|(?)l=|°(c)
mode = é@°-||-1 , ¢°>1 else0

F _
@@;—® = ,(:;®u)
F
== il
@E xu ”x'IT
@—o = f(x)5 log H
F _
%7 = 1 ®u)

A.2.2 Three parameter distributions

A.2.2.1 Generalized Pareto - ®; ;¢

i(@+¢) poxeil

0= e &0
FC) = (@8 u=Xiu
E[xK = “kégé@ “:))iii((i@ “Likk)i D if k is an integer
ity = EIC IO o iuy e i Foos k> i
mode = uf@:; ;>1, else 0
%—g = ,(:®u)
o = it
- e

¢
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A.2.2.2 Burr-Q®;;°

_ ®° (x=H)"
T = @+ T
1
— - ®. —
F(X) —_ l|u, U—m
K. —O\ = - |,—°
EX = F '(1+k'i(2@')(®'k'); i°<k<e@°
k. —oY\ - - |,—o
E[(X~Ax)] = F .(1+k-_(g@.)(®.k_ )_(l+k:°;®ik:°;l i u)+ XU k> §°
i
° 1 !1:0
mode = ®°'+1 ;, °>1; else0
%—g = ju®logu
F
= = il
@IL—_l xu “x'IT
= = f(x)log =
a° (x)5 log "

A.2.2.3 Inverse Burr - ;;u;°

A S
09 = S+ e
I i VN
A Y CEn)
kK.r. —o) - - |,—°
E[xk] — H |(C+k_i(<)’;(1 1 k= )’ i(’,o<k<°
k.r. _o) - - lL—o
E[(X ~x)¢] = HTi( +k_'(?,;(1 i k= )_(é +k=;1j k=2;u) +xK[1 j u]; k> j¢°
. i
A 1.
mode = (’o_:ll ; ¢°>1; else0
ok _ u¢ logu
i
@I(E i X
I = If(X)H
%~ foXio "
@O o g u
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A.2.3 Two parameter distributions
A.2.3.1 Pareto - ®;|

f(x) =
F(x) =
E[X*] =
E[X*] =
EX x| =
EX x| =

E[(X %) =

mode =

1i

uk

®p®

=®

H
X+

ik+1)i@®jk).

D jl<k<®
i (®) '
HeK!

© i 1%¢¢¢'(<A@ ik

if K is an integer

A.2.3.2 Inverse Pareto - ¢ ;|

f(x)
F(X)
E[XK]

E[XK]

u u ®il3
a1 : 3,
ail 11 X+q o8t
A !
inlog — =1
X+
. e
Wik+1)i@j k)—[k+1;® i K;x=(x + )] + x“
i(®)
0
A 1, A 1
@_F = 1 l.l ®|Og “
0@ ' ox+p X+u
oF X
— = if(x)-
i i ()u
p=pliMm . p__mt
t § 2m2 ti2m?
o xR
S (xHp)itt
R
=
- .
_ Ul(c+k)|(1lk); ii<k<l1
i)
H(ik)!

, If k is a negative integer
¢ i DI+ K ) )
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Zx:(x+u) S l ’ H X 7.
E[X A% = W YL )y K 1 k>
0 X + U
mode = u(‘ ! 1; ¢ >1; else 0
@_F _ Hoy T o Hoy |
0, = x+y g X+ |
OF X
-— = 3f(x))-
oy 09y
A.2.3.3 Loglogistic - °;u
ey
) = i+ 6P
I ¢ G )
FX) = u; u_1+(x:u)°

EXN = Wi@+k=")ilik="); i°<k<°®
E[(X ¥ = u"g(l+kl=°)i(1 i k=) (L+k="1j4k=>;u)+x*QL ju); k> j°

0-1'1=°
mode = g °-:-1 °>1; else0
oF x  MxT
— = f(X)zlog —
0 ()5 log "
@F X
— = if(x)-
LT
A !
a__ 2log@B) . i = exp log(®) + log(p)

~ log(q) i log(p)’ 2

A.2.3.4 Paralogistic - ®;
This is a Burr distribution with °© = ®.

_ ®%(x=p)®
0= S e
FX) = 1ju® u= L

1+ (x=p)®
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W i(L+k=0)j(@® j k=®)

E[XK = ®) . j® <k <@?
1
K. - - - L=
E[(X ~x) = F '(1+k__%')(® ' k_®)_(1+k:®;® i k=®;1 j u) +xu® k> j®
1
e - q Th=e
mode = | % ;. ®>1; else 0
F
= iullogu+®(L § ) log(i=x)
@F X
= = if(x)=
o i ()u

Starting values can use estimates from the loglogistic (use © for ®) or Pareto (use ®)
distributions.

A.2.3.5 Inverse paralogistic - ;|

This is an inverse Burr distribution with © = .

L2
09 = S+ G
N G X
F(xX) = us; u_1+(x:u)é
Kef: 4 lmsVe(1 = Le;
E[XY = il +k;c(z;(1 i k—c); fil<k<g
K.gr. -\ - - L=
Elx A = L +kf?;(l RO ke k=g u) XL e K> 2
i(
mode = p( i )Y; ¢ >1; else0

F .
%_(L = u¢flogu j ¢(1 i u)log(u=x)]
oF _ X
@—“ - If(x)IJ

Starting values can use estimates from the loglogistic (use © for ¢) or inverse Pareto (use ¢)
distributions.
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A.3 Transformed gamma family

A.3.1 Three parameter distributions

A.3.1.1 Transformed gamma - ®; ;¢

_ ¢u®ei”_ _ o
fx) = i (@) u = (x=p)
FO) = i(®u)
k. —,
Exi = B '((i@(“(;)k‘°); k> i@
k. —,
E(X ~Ax)) = R Z ) '((i@(g)k_(‘)i(®+k=¢;U)+X"[li i@u)l; k> i@
He, - 1T=
mode = M 1 ; ®, >1; else 0

¢

OF

@—® = i0(®;U)

F

= it

@IE xu “x'IT
— = f(X)—log —
@ ¢ W

A.3.1.2 Inverse transformed gamma - ®; ;¢

_ ¢u®ei“. _ o
f0) = Syt u=0=)
FxX) = 1ii(®u)
_Hi@ g k=), .
E[Xk] - W, k <®;
k. - =
EIX A% = %ni {(® i k=giu)] + X< @ u)
K. - =
= i) '((i@(é)k_(‘)G(® i k=¢;u) +xXj(®;u); all k
H -,
mode = | ®(;C+1
oF _ ii'(®u)
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@_F — if(X)i

i o
X X

. = )2 Z

@ (X)c o9 u

A.3.2 Two parameter distributions
A.3.2.1 Gamma - ®;|

(x=p) e I*H
Xi(®)
FX) = i(®x=p)
Wi@+k),
i®
E[XX] = p¥@+k j 1)¢et®; if k is an integer
1§ (®+ k)
i(®)

fx) =
E[XK = k> j®

E[(X x4 = i(@+Kx=p) +X[1 i i@x=p); k> i®

= ®@+1)ttt(@®+K j DU i(®+k;x=p) + x[1 i i(®x=p)];

mode = p@®ijl);, ®>1; else0

OF
0®
oF
oH

= i'(® x=p)

= 0]

®— m? A tim?
tjm? H m

A.3.2.2 Inverse gamma - ®;

(u=x)%eiv=x

Xi(®)
FOX) = 11 i(®p=x)

q = Ki@ik).
E[X"] = TR k<®

p« PR :

CEPICED) if k is an integer
i@ i k)

i(®)

f(x) =

E[XK =

EI(X~x = [1§ i(® ik p=x)] + X (®; p=x)

43

k an integer
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_ @ik L e
= WG((@ i k;p=x) +xj(@®; p=x); all k
_ e

T @@ j k)

mode = p=(®+1)

G(@® j k;p=x) + xj (®; p=x); k an integer

F
%—® = 1i'@®;p=x)
oF X
— = jfXx)-
ol i ()U
®_Ztimz_ A mt
T tim2’ Tt m?

A.3.2.3 Weibull - y;¢

s (x=1)é e i )¢
Fx) = ¢ U)X
F(x) = 1jeitew
E[XY = pi(l+k=¢); k> ¢
EIX XN = pfi+k=¢) il +k=¢; (x=p)¢] + xKe 6 k>

i, o4 T
mode = (’.'1 ;¢ >1;else0
¢
@F X “x'IT
— = f(x)=log =
@@E (x)é o9
X
-— = if _
o i (X)U
A |
= exp glog(p) i log(q) .g= log(log(4)) . p= log(log(4))
gil "7 log(log(4=3))’ log(a) i log(i)

A.3.2.4 Inverse Weibull - ;¢

¢ (u:x)é el (u=x)¢

o) = -

F(X) = pi()*
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EXY = uiik=e) k<yg ) :
E[(X ) = i@ ikse)fljilli k=i; (u=)°]g + X 1§ el s allk
1
= PP i k=¢)G[L i k=¢; (U=x){] + Xk 1 j ei¢=0°
K : 1=,
mode = T+ 1
OF X ”x‘IT
= = f()>log =
g,‘& (X)¢ og "
— S fD
@_U = If(X)U
A |
= exp glog(a) i log(p) Lg= log(log(4)) . p= log(log(4))
gil "= log(log(4=3))’ log({1) i log(p)

A.3.3 One parameter distributions
A.3.3.1 Exponential - y

gix=H
f(x) =
) "

F(x) = 1jei™

E[X] = wfik+1); k> il
E[XX] = p*k!; if k is an integer
EXAX] = u(lie"™)
E[X )N = ik +1)jk+1Lxp) +xe™ k> j1
= k! (k + 1;x=p) + x®e H: k an integer
mode = 0
oOF X
- =i f(X)—
TRART
N
i=m
A.3.3.2 Inverse exponential - y
uei“zx

f = =
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F(x) = eik™
E[X = piik); k<1

E[(X~x) = pi(1 i kG i k;p=x) +x(1 j ei¥); all k
mode = p=2

oF X
—=;f _
o ! (X)U
= iqlog(3=4)

A.4 Other distributions

A.4.1.1 Lognormal - 1% (* can be negative)

- ] oo A=) = 109X P
f(x) = ﬁexp(.z-Z)-A(z)-(ﬁ;x), z= "

F(xX) = ©(z2)
E[X] = exp(k® + k2%42=2) '
logx j * j k¥~

E[(X ~*x)X] = exp(k®+ k2%2=2)© ;
/)

+X[1 j F(X)]

mode = exp(T j ¥%?)
%—'i = jA@)=%
F ]
% = jzA(2)=%
(@]

A= log(t) j 2log(m); 2 =log(m) j H2=2

A.4.1.2 Inverse Gaussian - 1;

A . = ( uZz) N
fO) = g5 &P i 2573
2 A 1, 2 A 1,3
F) = 04 & seeprenodiy £ 5 y=2E0
X X 1
E[X] = 1; Var[X] ==
[ ] arE]A !l=2% 2 A !l=23
EX X = xj1204 £ 5 1yexp@e=1)o4iy % S
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oF 2 A 13A 1, 5 2 A 1,3
; X
i i A4z % = % Eil—gexp(2u=1)©4iy % >
2 A 1,3A 1,
] X
+exp(2u=r)A4jy % > % =
2 A !:3 2 A !:3
@_F = ZA4Z E 125;+gexp(2u:1)©4iy E 125
Ou X 2(ux)=2 =2 X
2 A !1:23
expu=n)A4jy &5 Y
X 2(ux)1=2
A—=pm: = m3
’ tjm?2
A.4.1.3 Single parameter Pareto - ®;
® ®
f) = i x>y
FOO = 15 (1= x>yp
e~
K] — :
EX] = o — k<®
e~ ku®
NAYKT = -
EIX0T = 55k T @1 i
mode = |
A1 A1
F _ _p T
@—®—| ; |Og ;
&=_"
mikp

Note - Although there appears to be two parameters, only ® is a true parameter. The
value of 4 must be set in advance.
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Appendix B

An Inventory of Discrete
Distributions

B.1 Introduction

The sixteen models fall into three classes. The divisions are based on the algorithm by
which the probabilities are computed. For some of the more familiar distributions these
formulas will look dizerent from the ones you may have learned, but they produce the same
probabilities. After each name, the parameters are given. All parameters are positive unless
otherwise indicated. In all cases px is the probability of observing k losses.

For ..nding moments, the most convenient form is to give the factorial moments. The
jth factorial moment is *;) = E[N(N § 1)¢¢¢(N j j +1)]. We have E[N] = 1, and
Var(N) = %) + ) i ).

The estimators which are presented are not intended to be useful estimators but rather for
providing starting values for maximizing the likelihood (or other) function. For determining
starting values, the following quantities are used (where ny is the observed frequency at k
(if for the last entry ny represents the number of observations at k or more, assume it was
at exactly k) and n is the sample size):

When the method of moments is used to determine the starting value, a circumzex (e.g., °)
is used. For any other method, a tilde (e.g., J) is used. When the starting value formulas
do not provide admissible parameter values, a truly crude guess is to set the product of all
. and  parameters equal to the sample mean and all other parameters equal to 1. If there
are two _ and/or  parameters, an easy choice is to set each to the square root of the sample
mean.

The last item presented is the probability generating function,

P(z) = E[z"]:

49
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B.2 The (a,b,0) class

The distributions in this class have support on 0, 1, .... For this class, a particular distribution
is speci..ed by setting po and then using px = (a + b=K)pk;1. Speci..c members are created
by setting po, &, and b. For any member, *,, = (a +b)=(1 i a) and for higher j, *,

APPENDIX B. AN INVENTORY OF DISCRETE DISTRIBUTIONS

@ +b)r;;1=(1 i @). The variance is (a +b)=(1 i a)?:

B.2.1.1 Poisson - |

B.2.1.2 Geometric -

Po
Pk

EIN] = ~

P(2)

po = et-; a=0;, b=,
ei. K
Pk = K
EN] = .; Var[N]=,
P(23 = e-(ib
= 1=1+ ); a= =(1+ ); b=0
—k
= @+ )kt
Var[N]= (1+ )
= [Li iy

This is a special case of the negative binomial with r = 1.

B.2.1.3 Binomial - g;m; (0 < g < 1; m an integer)

a=igq=(11aq)
r: ‘@i )™Mk k=0;1;::5;m

b= (m+1)g=(1 i q)

Var[N]=mq(l i q)

Ppo = gi!q)”‘;
Pk =

E[N] = mg;
¢ = 2=m

P(z) =

[1+az i DI7
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B.2.1.4 Negative binomial - ;r

ppo = A+ ) a= =1+), b=(ril)=(1+)
r(r+1)cte(r+k j 1) ¥

P =

k!(l+_)r+k
E[N] = r; Var[N]=r (1+ )
A _ %2 ) ' _ a2
= il T2 a

P(z) = [1i (il

B.3 The (a,b,1) class

To distinguish this class from the (a; b; 0) class, the probabilities are denoted Pr(N = k) = p}!
or Pr(N = k) = p] depending on which sub-class is being represented. For this class p}!
is arbitrary (that is, it is a parameter) and then p)M or p] is a speci..ed function of the
parameters a and b. Subsequent probabilities are obtained recursively as in the (a;b;0)
class: p! = (a+ b:k)p{:"il; k = 2;3;::: with the same recursion for pM: There are two sub-
classes of this class. When discussing their members, we often refer to the *“corresponding”
member of the (a;b;0) class. This refers to the member of that class with the same values
for a and b. The notation pyx will continue to be used for probabilities for the corresponding
(a; b; 0) distribution.

B.3.1 The zero-truncated sub-class

The members of this class have p, = 0 and therefore it need not be estimated. These
distributions should only be used when a value of zero is impossible. The ..rst factorial
moment is *;, = (a+b)=[(1 i a)(1 i po)] where py is the value for the corresponding member
of the (a;b;0) class. For the logarithmic distribution (which has no corresponding member)
14y = =log(1+ ). Higher factorial moments are obtained recursively with the same formula
as with the (a; b; 0) class. The variance is (a+b)[1 i (a+b+1)po]=[(1 i a)(1 i po)]?>. For those
members of the sub-class which have corresponding (a; b; 0) distributions, p} = pk=(1 i po)-

B.3.1.1 Zero-truncated Poisson -

pi = .=(e-jl); a=0; b=
k
P = KiGe- 5 1)
EIN] = .=(1ie'); Var[N]=_[1j(, +Del-]=(1jel-)
> = log(n*=n,)

5

E3
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e-“j1
e- j1

P(z) =

B.3.1.2 Zero-truncated geometric -

pp = 1=1+7); a="=1+"); b=0
—kil
s
E[IN] = 1+ ; Var[N]="(1+")
A Z“il
i @iDi@+ )
e i@+ )

This is a special case of the zero-truncated negative binomial with r = 1.

B.3.1.3 Logarithmic -

pi = =L+ logl+ ) a="=(1+"); b=j =(1+")
—k
P = T K logd
g(l+ )
E[N] = “=log(1+ ); Var[N]= [1+ § =log(1+ )l=log(1+ ")
== Mo p2tiD
n; &
_ . loglli (zil)]
PE = )

This is a limiting case of the zero-truncated negative binomial asr ¥ 0.

B.3.1.4 Zero-truncated binomial - g;m; (0 < g < 1; m an integer)

pp = m@iN™=li @i a=ig=(Ligq); b=(m+1)g=(1jq)
ro_ ok g@aom o
Pk = TR L k=1;2;::::m

EIN] = mag=[1§ (1§ o™
maf(Lia)i (@Qig+mg)(liq)m]

varNl = Li@iomp
& = A-m
PR) = L+aqz i DI"iQig"

1i@igm
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B.3.1.5 Zero-truncated negative binomial - ;r;(r > jl)
pr = r=E[@Q+)" (1+_%]: a= =(1+"); b=(ril) =(1+")
o = r(r+1)eter+ki1) X
ro=

KI[(L+ )" j 1] 1+
EIN] = r=[1i @+ )]
ri+ )i+ +r)a+ )i

varlN] = i@+ )P
2 a2
by = Wi GaDI A

This distribution is sometimes called the extended truncated negative binomial distribu-
tion because the parameter r can extend below 0.

B.3.2 The zero-modi..ed sub-class

A zero-modi..ed distribution is created by starting with a truncated distribution and then
placing an arbitrary amount of probability at zero. This probability, p)!, is a parameter.
The remaining probabilities are adjusted accordingly. Values of p}! can be determined from
the corresponding zero-truncated distribution as p¥ = (1 i p}!)py. or from the corresponding
(a;b; 0) distribution as p}' = (1 § p)")pk=(1 i po). The same recursion used for the zero-
truncated sub-class applies.

The mean is 1 j p)! times the mean for the corresponding zero-truncated distribution.
The variance is 1 j p)! times the zero-truncated variance plus p)' (1 j p)') times the square of
the zero-truncated mean. The probability generating function is PM(z) = p)*+ (1 i p}")P (2)
where P (z) is the probability generating function for the corresponding zero-truncated dis-
tribution.

The maximum likelihood estimator of qg is always the sample relative frequency at 0.

B.4 Compound class

Members of this class are obtained by compounding one distribution with another. That is,
let N be a discrete distribution, called the primary distribution and let My; M,; ::: be iden-
tically and independently distributed with another discrete distribution called the secondary
distribution. The compound distribution is S = My + ¢t¢ + My. The probabilities for the
compound distributions are found from

X
p =  (@+by=k)fypk;y=(1 i afo)

y=1
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forn =1;2;::: where a and b are the usual values for the primary distribution (which must
be a member of the (a;b; 0) class) and fy is p, for the secondary distribution. The only two
primary distributions used here are Poisson (for which po = exp[i . (1 i fo)]) and geometric
(forwhich pg = 1=[1+ j To]). As this information completely describes these distributions,
only the names and starting values are given below.

The moments can be found from the moments of the individual distributions:

E[S] = E[N]JE[M] and V ar[S] = E[N]V ar[M] + V ar[N]JE[M]?:

The probability generating function is P (z) = Pprimary (Psecondary(2)).

In the following list the primary distribution is always named ..rst. For the ..rst, second,
and fourth distributions, the secondary distribution is the (a;b;0) class member with that
name. For the third and the last three distributions (the Poisson-ETNB and its two special
cases) the secondary distribution is the zero-trucated version.

B.4.1 Some compound distributions

B.4.1.1 Poisson-binomial - _;q;m(0 < g <1, m an integer)

2-a - 1
= %m—ll " =az(m@) or ¢ = 0:5; T = 22=m
1

¢

B.4.1.2 Poisson-Poisson - _i;.»

The parameter _, is for the primary Poisson distribution and _, is for the secondary Poisson
distribution. This distribution is also called the Neyman Type A.

B.4.1.3 Geometric-extended truncated negative binomial- ;; ,;r (r> jl)

The parameter  is for the primary geometric distribution. The last two parameters are
for the secondary distribution. The truncated version is used so that the extension of r is
available.

B.4.1.4 Geometric-Poisson - ;

E3
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B.4.1.5 Poisson-extended truncated negative binomial-_; ;r

L GO By Y TG B R G L S
AK j3n°+22) j (B 2)?2° AL+

£ o= %znl:niz“znozn L= %Zin‘ ) ~:i
(#* § 2*)(no=n) log(no=n) i 2(*No=n j Ny=n)’ a1+p 7 &

P P
where K = 2" L k®n, j 321" L Kk2ny +22°

This distribution is also called the generalized Poisson-Pascal.

B.4.1.6 Polya-Aeppli - _;~

This is a special case of the Poisson-extended truncated negative binomial with r = 1. It
is actually a Poisson-truncated geometric.

B.4.1.7 Poisson-inverse Gaussian - _;

T = jlog(ne=n); ~ =4(2 j ’:):m

This is a special case of the Poisson-extended truncated negative binomial with r = j :5.

B.5 A hierarchy of discrete distributions
The following table indicates which distributions are special or limiting cases of others. For

the special cases, one parameter is set equal to a constant to create the special case. For the
limiting cases, two parameters go to in..nity or zero in some special way.
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Distribution Is a special case of | is a limiting case of

Poisson ZM Poisson Neg. bin., P-bin.
P-inv. Gaussian
Polya-Aeppli
Neyman A

ZT Poisson ZM Poisson ZT Neg. bin.

ZM Poisson ZM Neg. bin

Geometric Neg. bin. Geometric-Poisson

ZM geom

ZT Geometric ZT Neg. bin.

ZM Geometric | ZM Neg. bin.

Logarithmic ZT Neg. bin.

ZM Logarithmic ZM Neg. bin.

Binomial ZM binomial 0

Neg. bin. ZM Neg. bin. P-ETNB

P-inv. Gaussian | P-ETNB

Polya-Aeppli P-ETNB

Neyman A P-ETNB




Appendix C
The SimplexMethod

The method (which is not related to the simplex method from operations research) was
introduced for use with maximum likelihood estimation by Nelder and Mead in 1965 [2].
An excellent reference (and the source of the particular version presented here) is Sequential
Simplex Optimization by Walters, Parker, Morgan, and Deming [4].

Let x be a k £ 1 vector and f(x) be the function in question. The iterative step begins

any iteration the points will be ordered so that f, < ¢¢¢ < fi ;. When starting, also arrange

for f, < f,. Three of the points have names: X; is called worstpoint, X, is called second-

worstpoint, and X+ is called bestpoint. It should be noted that after the ..rst iteration

these names may not perfectly describe the points. II;jow identify ..ve new points. The ..rst
i thha rartar Af v e e ; — Fks1y _ ; : ;

one, Y1, is the center of X,;:::;Xk+1, Thatis, y; = i=2 x;j=k, and is called midpoint. The

other four points are found as follows:

Y2 = 2y1i Xi refpoint
Y3 = 2y, j X1;  doublepoint
ya = (y1+Y2)=2; halfpoint
ys = (y1+X;1)=2; centerpoint.

The key is to replace worstpoint (x;) with one of these points. The decision process proceeds
as follows:

1. If f, < g, < fi41 then replace it with refpoint.

2. 1f g _ Tyxsq and gz > fi4; then replace it with doublepoint.

3. If g2 _ fx+1 and gz - Tysq then replace it with refpoint.
4. If f, < g, - T, then replace it with halfpoint.
5. If g, - T, then replace it with centerpoint.
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After the replacement has been made, the old secondworstpoint becomes the new worst-
point. The remaining k points are then ordered. The one with the smallest functional value
becomes the new secondworstpoint and the one with the largest functional value becomes
the new bestpoint. In practice, there is no need to compute ys and gz until you have reached
step 2. Also note that at most one of the pairs (ys;94) and (ys; gs) needs to be obtained,
depending on which (if any) of the conditions in steps 4 and 5 hold.

The following graph indicates the progress of the simplex. The problem is to maximize the
function f(x;y) = ja? j 2b%. The starting simplex is (1;1), (1;2), (2;1) and the maximum
is at (0;0).

Ten Simplex Iterations

15 —+




Appendix D

Frequency and Severity Relationships

Let N be the number of losses random variable and X be the severity random variable. If
there is a deductible of d imposed, there are two ways to modify X. One is to create Y, the
amount paid per loss:

0; X -d
Xjd X=>d:

In this case the appropriate frequency distribution continues to be N.
An alternative approach is to create Y °, the amount paid per payment:

unde.ned X -d
Xijd X >d:

YD

In this case the frequency random variable must be altered to refect the number of payments.
Let this variable be N®. Assume that for each loss the probability isv =1 j Fx(d) that a
payment will result. Further assume that the incidence of making a payment is independent
of the number of losses. Then N® = L; + L, +¢¢¢+ Ly where L is 0 with probability 1 j v
and 1 with probability v. Probability generating functions yield the following relationships

N Parameters for N*®
Poisson L=y,
. g _ pMijei-+ei®. jpMeiv.) | 5
ZM Poisson IO'S" =Rt f=y,
Binomial q° =Vvq
) ] pMn — ' iim+@ive)mipy' (Livg™
ZM binomial lidiom
_ _ q° = vq
Negative binomial f=v;r'=r
pMn — ry i(l+7)”+(l+v7_)”ir33" (I+v )ir
ZM negative binomial ENCSIN
=V ; r'=r
. Ma=17@ipMlog(l+v )=log(l+
ZMlogarithmic Po (L pg) _g\(/ )7log(1+ )
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The geometric distribution is not presented as it is a special case of the negative binomial
with r = 1. For zero-truncated distributions, the abowve is still used as the distribution
for N” will now be zero-modi..ed. For compound distributions, modify only the secondary
distribution. For ETNB secondary distributions the parameter for the primary distribution
is multiplied by 1 j p)!® as obtained above while the secondary distribution remains zero-
truncated (however " =v ):

There are occasions in which frequency data are collected which provide a model for N*°.
There would have to have been a deductible d in place and therefore v is available. It is
possible to recover the distribution for N, although there is no guarantee that reversing the
process will produce a legitimate probability distribution. The solutions are the same as
above only now v = 1=[1 j Fx(d)].

Now suppose the current frequency model is N” which is appropriate for a deductible of
d. Now suppose the deductible is to be changed to d’. The new frequency for payments is
N’ and is of the same type. Then use the table with v =[1 j Fx(d)]=[1 i Fx(d)].

Finally, suppose a truncating limit is imposed. In this case

A unde..ned, X -d
X ijd; d<X<u
unde..ned, X _ u:

Then proceed as above, only now v = Fx(u) j Fx(d).



Appendix E

Limited Expected Value Calculations

The limited expected value is de..ned as
Z
EIXAx]=  tF)dt+x[1 j FM)]:
0

It can be used to obtain the expected payment when the loss X or aggregate loss S is
modi..ed by a deductible (d), a limit (u), or a coinsurance(®). Suppose all three are present,
so that the amount paid, Y, is related to X by

Y 0; X <d
X jd); d-X -u

®u jd; X>u

Then E[Y] = ®FE[X ™ u] j E[X ™ d]g. If there is infation so that X" = (1+r)X and Y is
based on X* then E[Y] =®(1 + r)TE[X Mu=(1+7r)] § E[X ~d=(1 + )]g.
The limited expected squared value is de..ned as
z
E[(X~Ax)2 = 2F)dt+x[1 § FM]:
0

We then have E[Y?] = @FE[(X M u)?] i E[(X ~d)?] j 2dE[X ™ u] + 2dE[X ~d]g. The

variance can be found by subtracting the square of the mean. These calculations can apply
to either the individual or the aggregate losses.
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Appendix F

The Recursive Formula

The recursive formula is
n P. o (@]
_ pri @+D)polfi + joi(a+Dbj=i)Fjgi;; g
gi = 17 afy) : =1;2;:::

where g; = Pr(S =i); pi = Pr(N =1), and f; = Pr(X = j). The formula must be initialized
with the value of go. These values are given below. It should be noted that if N is a member
of the (a;b;0) class, p; i (2@ +b)pp = 0 and so the ..rst term will vanish. If N is a member
of the compound class, the recursion must be run twice. The ..rst pass uses the secondary
distribution for p;, a, and b. The second pass uses the output from the ..rst pass as f; and
the primary distribution for p;, a, and b.

Starting values (go) for recursions

Poisson exp[. (fo i 1)]
geometric 1+ (1j fo)lit
binomial [L+q(fo i D™
negative binomial [1+ (1 j fo)]i"
. exp(.fo) i1
ZM Poisson o+ (1Y) ———
Po (1ip") exp() i1
: M -pMy___ 0
ZM geometric po! + (1 i ph )1 )
[L+qg(foi DIMi (1ig"

ZM binomial M + (1§ p)")

_li@ion o
L+ Lif)"i@+ )i
i@+ )im
log[l + (1§ fo)]
log(1+ )

ZM neg. bin. py’ + (i py")

ZM logarithmic  pM+@ i p)) 1i
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Appendix G

Discretization of the Severity
Distribution

There are two ways to discretize the severity distribution that are used in the program. One
is the method of rounding and the other is a mean-preserving method.

G.1 The method of rounding

This method has two features, all probabilities are positive and the probabilities add to one.
Let h be the span and let Y be the discretized version of X. If there are no modi..cations
then

f; = Pr(Y =jh)=Pr[( i 1=2)h - X < (j +1=2)h]
Fx[(G +1=2)h] i Fx[( i 1=2)h]:

Suppose a deductible of d, limit of u, and coinsurance of ® are to be applied. If the modi..-
cations are to be applied before the discretization then

Fx (d+h=2) j Fx (d)

%0 B Fo LG D i Focld 1 1 1=2)h]
DN Fxdi Gi1=Dh]. = — ae.. .. id -
9j = = =T B el bl
— liFx@ih=2).
Quid=h = 1iFx(d)

where g; = Pr(Z = j®h) where Z is the modi..ed distribution. This method does not require
that the limits be multiples of h but does require that u j d be a multiple of h. This method
gives the probabilities of payments per payment.

Finally, if there is truncation from above at u, change all denominators to Fx (u) § Fx(d)
and also change the numerator of g ;a)=n to Fx(u) i Fx(u i h=2).
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G.2 Mean-preserving

This method ensures that the discretized distribution has the same mean as the original
severity distribution. With no modi..cations the discretization is

fo
fj

1 j E[X ~h]=h
QE[XAjh] § E[XA(G 1 D)h] i E[XA(F +1)h)=h; j=1;2;:::.

For the modi..ed distribution,

= 1 E[X"d+h] j E[Xd]

% _ 2E=X denh S ESRs  § Dbl EpxAd+ G+ D]

R _ ~d+jh] § Ad+(i 5 A Nd+(j+ . R jd -

. _ [X~uh] [. (h[l)ihl]:;(d)] l B A
_ E[X~uh]i E[XAuiDh].

Guid=h = h[l.i Fx (d)] —

To incorporate truncation from above, change the denominators to h[Fx(u) § Fx(d)].
Also, add h[1l j Fx(u)] to the numerator of go and subtract it from the numerator for

O(uid)=h-

G.3 Undiscretization of a discretized distribution

Let go be the true probability that the random variable is zero. Let p; = Pr(S® = jh) where
S* is a discretized distribution and h is the span. The following are approximations for the
cdf and LEV of S, the true distribution which was discretized as S°. They are all based
on the assumption that S has a uniform distribution over the interval from (j §j 1=2)h to
(J + 1=2)h for integral j. The ..rst interval is from 0 to h=2 and the probability py § 9o
is assumed to be uniformly distributed over it. Let S* be the random variable with this
approximate continuous distribution. Then the approximate distribution function can be
found by interpolation as follows. First, let

: X o
Fj = Fs==[( +1=2)h] = pi; j=0;1;:::
i=0
Then, for x in the interval (J § 1=2)h to (J + 1=2)h,

Z x

Fe() = Fjan+ - hUpdt=Fj+xi (i 1=2)hlh
Git=2h

Fise+[xi (i 1=2)hhil(F i Fjin)
= QiwFji+wF;, w=x=hjj+1=2

Because the ..rst interval is only half as wide, the formula is, for 0 - x - h=2,

Fsea(X) = (1 j W)go +Wpo; W = 2x=h:
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It is also possible to express these formulas in terms of the discrete probabilities:

2X
Fsea(X) = go+F(po i %), 0<x-h=2

bid s (1 3 1=
= i+X|(jr|112)hpj;

i=0

(g il1l=2h<x - (j+1=2)h;

With regard to the limited expected value, expressions for the ..rst and kth LEV’s are

2
ES™~AX) = x(1i 9o) i XF(pO i g); 0<x - h=2
h ot 2§ [G i 1=2)h]?
= 7(Po i Go) + i=llhpi L2 10 [(JZIh )h] j
+X[1 j Fs=(): ( i1=2)h<x - (j +1=2)h;

and
E[(S™ ~ x)¥ 2 (o i 00) + XL § Fee(); 0<x - he2
[( X)“] m(po i Jo) +X[1 i Fsee(X)]; X - h=
_ (=2)(po i go) | DRNM[G+1=2) (i i 1=2)<]
B k+1 =1 k+1 Pi
X [G a =)h
h(k +1) )

+xK[1 j Fs=(X)]; (i 1=2)h<x - (j +1=2)h:
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