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Appendix D Discrete-Time (ARMAX-type) Models

This Appendix describes discrete-time models of the following types:
1. Autoregressive (AR)
2. Moving average (MA)
3. Autoregressive moving average (ARMA)
4. Autoregressive moving average with exogenous inputs (ARMAX)
5. Autoregressive integrated moving average (ARIMA)

D1 Discrete-Time Models as Integrated Continuous Processes
Discrete-time constant parameter models are appropriate when measurements are
sampled at discrete fixed intervals, and system inputs are held constant over sampling
intervals. For all of the above types except ARIMA, it is assumed that the system is a
wide-sense stationary random process.

A discrete model can be derived from a continuous linear model of the form
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where ( )tx is the n-element state vector, ( )tu is a known l-element input, ( )tq is a p-

element ( p n ) vector of random process noise, ( )ty is an m-element ( m n )

measurement vector, ( )tv is an m-element measurement noise vector, F is an n n

matrix, L is n l , G is n p and H is m n . Some elements of the v vector may be

zero. It is usually assumed that
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sQ and sR are power spectral densities (PSD) of the white noise processes. By

integrating the )(tx equations over the sampling interval T , treating ( )tq and ( )tv as

constant over T , one obtains equations of the form
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where we use the notation )(),(),( 11 iiiiii ttt vvxxxx   , etc. Integration of

equations (D1-1) to obtain equation (D1-2) is discussed in Section 2.3. Notice that iv

and 1iq are also zero-mean, uncorrelated, white random sequences, but 1iCq is equal to

the integrated effect of )(tGq over the interval T , taking into account the dynamics of

( )tx represented by the first line of equation (D1-1).

Equation (D1-2) is not quite in the form commonly used to define ARMAX models.

The measurement noise iv is sometimes dropped from the discrete model since it is

assumed that the only noise in the system affects both current and past values of iy .

Separate measurement noise can be added later if desired. Also, use of ix in ii xDy 

limits the number of zeroes in the resulting ARMA model to one less than the number of
poles. To allow the number of zeroes to be equal to the number of poles, the

measurement equation is modified so that either a portion of ( )tq directly affects iy , or

iy uses variables that will be equal to the value of ix at the next time step. In other

words, equation (D1-2) is replaced with
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Notice that the current control and process noise now directly affect the measurement.
For purposes of this derivation, we now assume that the system is single-input,

single-output so that , , andy v u q in equation (D1-3) are scalars, B and C are column

vectors, and D is a row vector. The derivation can be extended to multi-input, multi-
output (MIMO) systems, but the notation and derivation become cumbersome. Also, to
keep the derivation simple, we temporarily assume that x is of dimension two. Again this
is not a general restriction. Using these assumptions we write
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and
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Notice that DB, DC, DAB, and DAC are scalars. We assume that the matrix
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in equation (D1-5) is full rank so that it can be inverted to obtain
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where we have defined
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a 2 2 matrix. Substituting equation (D1-6) in equation (D1-4), we obtain
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Since D is a row vector (for scalar iy ), all multiplications of column vectors by D

produce a scalar result. Hence equation (D1-7) can be written as
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where , andj j j   are implicitly defined from the matrix multiplications in equation

(D1-7):
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Equation (D1-8) is the general form for a second-order ARMAX model. This form can
be extended to an n-element model as

1 0 1

n n n

i j i j j i j j i j i
j j j

y y u q q    
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The iu terms are the exogenous inputs. If all 0j , the model is ARMA. If all 0j ,

and 0j , the model is MA. If all 0j  and 0j , the model is AR. Notice that the

summations for i jy  , jiu  and jiq  in equation (D1-10) may be separately truncated at

lower order than n.
The purpose of this derivation was to show that discrete ARMAX-type models could

adequately characterize the behavior of physical systems represented by the stochastic
continuous model shown in equation (D1-1). To obtain the ARMAX model, it was
necessary to make a number of restrictive assumptions. These include:

1. The sampling interval is constant with no missing measurements,
2. the system is a stationary random process,
3. system inputs are constant over the sampling interval (not required but usually

assumed),
4. the continuous model is linear,
5. measurement noise iv is dropped from the discrete model and is replaced with direct

feed of iu and iq into the measurement iy ,

6. the system is single-input, single-output.

Although separate measurement noise was removed for derivation purposes, it can be
added back into the model at the measurement output. This may be desirable when
implementing the model in a Kalman filter—both to make the model more realistic and to
avoid numerical problems. The ARMAX structure can be extended to MIMO systems,
but it is difficult to derive MIMO ARMAX models from continuous system models.

It is usually not practical to compute the model parameters ii  , and i directly

from a continuous model—even if it is available—so they must be determined
empirically from measured data. There are many different ways in which this may be
done. This topic is explored in Chapter 12.
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We now examine the characteristics of each model type. Further information on discrete
models and the relationship to z-transforms, correlation functions, and power spectra may
be found in Kay (1988), Marple (1987), Kay and Marple (1981), Oppenheim and Schafer
(1975), Rabiner and Gold (1975), Priestley (1981), Box, et al (2008), Shumway and
Stoffer (2006), Åstrom (1980), Brockwell and Davis (2006), and DeRusso et al. (1965).

D2 Autoregressive (AR) Process
An AR process (without control inputs) is defined as

ininiii qyyyy    ...2211 . (D2-1)

AR processes contain only poles (no zeroes) since the z-transform is
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where 1z is the unit delay operator,
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1j and f is frequency in Hz. The denominator of equation (D2-2) can be factored

to obtain
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where ,, 21 pp are the z-plane poles and
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If the roots of the denominator all lie within the unit circle in the complex plane, the
model is stable (output remains bounded) and causal (output only depends on past inputs,
not future). Stability can be understood by considering the first-order AR model

iii qyy  11 with the pole located on or outside the unit circle. When 11  , iy

will alternate in sign at each time step with an added perturbation iq that may either

increase or decrease the magnitude of iy , but will tend to make the variance of y

increase. When 11  , iy will increase at each step even without the effect of iq .
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When 11  , iy will alternate in sign (provided that iq is smaller than iy ) at each step,

but iy will still increase in magnitude.

The AR model is ideal for modeling narrowband signals since the output of the
transfer function equation (D2-3) will peak near the frequencies represented by the poles.
However, it cannot accurately model a transfer function with nulls unless the expansion is
carried to infinite order.

Equation (D2-1) can be represented in state-space form as:
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This form of the state-space model is called the controllable companion form since a

single control input on the last state (i.e., treat 1iq as a known control input) can be

found that will drive the output y to any desired value if the system is stable. The
companion form has certain benefits in control system analysis when studying the effects
of feedback. Other equivalent state-space representations are also possible. For example,
equation (D2-5) shows the observable companion form. Other structures include direct,
cascade, parallel, Lagrange, and frequency sampling (Rabiner and Gold 1975). It should
be noted that high-order companion matrices tend to be nearly singular and high-order
controllable canonical forms tend to be uncontrollable (Kenney and Laub 1988).
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For a third-order system, the state-space model of equation (D2-4) can be represented in
block-diagram form as shown Figure D2-1.
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Figure D2-1: Third-order AR model.

Example D2-1: Third-order AR Model
Consider the third-order model that may be used to represent colored noise in a dynamic
system:
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with roots )65.065.0(),65.065.0(,8.0 jjz  as shown in Figure D2-2. Since iq is

assumed to be white (uncorrelated) noise, the PSD of q is the same at all frequencies:

T
fSfS qq

2

1
,)( 0  .
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Figure D2-2: Pole locations in complex z-plane for third-order AR model.

The PSD of the real output iy is
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evaluated along the unit circle )/2sin()/2cos( TfjjTfjz   so that Re(z) =

cos(2πf/T). )( fS y is plotted in Figure D2-3 as a function of frequency for 10 qS .

Notice that the PSD peaks at a frequency of about 0.125 Hz, which corresponds to the
location of the complex pole pair z = (0.65 +j 0.65), (0.65 -j 0.65). Since the poles are
only 0.081 from the unit circle, the damping is low and the PSD peak is pronounced.
Also notice that the PSD magnitude drops starting from frequency zero, and this is due to
the pole at z = (0.80+j0).
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Figure D2-3: PSD of example D2-1 (third-order AR model).

D3 Moving Average (MA) Process
An MA process is simply a weighed average of past inputs, with no feedback:

pipiiii qqqqy    ...2211 . (D3-1)

Again we have ignored control inputs. The transfer function for the MA model is
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where ,, 21 rr are the z-plane zeroes and
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MA models are ideal for modeling nulls in the PSD, but cannot accurately model peaks.
A block diagram for a third-order MA model is shown in Figure D3-1. Unlike the AR

model, it is not possible to predict future iy from just past values since iy depends on

past values of the random inputs iu (which are not observed). To predict one time step in
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the future it is necessary to implement the model in a Kalman filter and estimate the
states from measurements y.

Figure D3-1: Third-order MA model.

Example D3-1: Third-order MA Process
This example places the zeros of the MA transfer function close to the imaginary axis:
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(D3-3)

Figure D3-2 shows the location of the zeroes in the z-plane and Figure D3-3 shows the
PSD. Again the zeroes are close to the unit circle (lightly damped) and the PSD null at
0.25 Hz is sharp. The zero at 0.3+j0 does not have a strong affect on the PSD because it
is close to the origin.
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Figure D3-2: Zero locations for third-order MA model.
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Figure D3-3: PSD of Example D3-1 (third-order MA model).
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D4 Autoregressive Moving Average (ARMA) Process
As the name implies, an ARMA process has both poles and zeroes. The number of
zeroes is generally less than or equal to the number of poles, but this is not an inherent
restriction. Poles must be inside the unit circle for a stable and causal system. If all
poles and zeroes are inside the unit circle it is called a minimum phase or invertible

system; that is, the input noise iq can be reconstructed from knowledge of the past

outputs jy for j i . The ARMA difference equation is:

liliiininiii qqqqyyyy    ...... 22112211 . (D4-1)

The transfer function for the ARMA model is

1 2
1 2

1 2
1 2

1( )

( ) 1

l
l

n
n

z z zY z

Q z z z z

  
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   


   




(D4-2)

which can be factored to obtain
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(D4-3)

where
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It is important that common factors appearing in both the numerator and denominator of
equation (D4-3) be removed since they can cause observability problems when ARMA
models are used for estimation purposes.

The zeroes, ir , and poles, ip , may be real or complex. Complex poles or zeroes must

occur in complex conjugate pairs for a real system. Hence equation (D4-3) can be
written in terms of first-order factors for real poles and zeroes, and second-order factors
for complex conjugate poles or zeroes. For example, the transfer function for complex

conjugate pole ( pp, ) and zero ( rr, ) pairs can be written as

22

22

)Re(2

)Re(2

))((

))((

pzpz

rzrz

pzpz

rzrz













(D4-4)

where 222
)Im()Re(  and Im( ) is the imaginary part of the complex number.
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A third-order ARMA model with added measurement noise iv can be represented in

state-space form as:

 

1 1

2 2

3 1 2 3 3 11

3 1 2 2 1 3

0 1 0 0

0 0 1 0

ii i

i i i i

x x

x x

x a a a x q

y q v     



       
               
                

     x

. (D4-5)

This is shown in the block diagram of Figure (D4-1). This structure uses the minimum
number of delays and is sometimes called canonical, although the description is
ambiguous as other three-delay structures are also possible.

Figure D4-1: Third-order ARMA model (with added measurement noise).

To demonstrate that an ARMA model can be implemented using state-space
representations other than companion forms, we expand equation (D1-23) in partial
fractions (provided that l n ), to obtain

n

n

pz

K

pz

K

pz
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zQ

zY


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



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2

2

1

1

)(

)(
(D4-6)

where the complex coefficients iK are determined by the method of residues (DeRusso et

al. 1965):
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. (D4-7)

If repeated roots of the form 1/ ( )r
iz p appear in the transfer function, then equation

(D4-6) will contain terms

1 1
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...
( ) ( ) ( )

i i i r
r

i i i

K K K

z p z p z p
    
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(D4-8)

and the K coefficients are computed as

1

1 ( )
( ) for 0,..., 1

! ( )
i

j
r

i r j ij

z p

d Y z
K z p j r

j dz Q z
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  
(D4-9)

Repeated roots at 0z  are sometimes used to account for transport delays if the delay is
not explicitly modeled.

Example D4-1: Partial Fraction Expansion of Third-order ARMA Model
Consider the third-order ARMA model

1 1 3

1 1 3
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( ) ( )( )( )
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Q z z p z p z p
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(D4-10)

with complex conjugate poles ( 
11 , pp ) and zeros ( 

11 , rr ). To use a partial fraction

expansion, the order of the numerator polynomial must be lower than the order of the
denominator. Hence we must either use a preliminary step of long division to write

)(

)(
1

)(

)(

zQ

zR

zQ

zY


where R(z) is second order, or to multiply by ( /z z ) to obtain
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zQz
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and then expand ( ) / [ ( )]Y z z Q z in partial fractions. We use the second method to obtain

31 1 4

1 1 3
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KK K KY z
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Q z z p z p z p z





 
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(D4-11)

where
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The complex pole pairs can be combined to obtain
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. (D4-12)

A state-space representation of equation (D4-12) is

 
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(D4-13)

where

 

2

1 1 2 1 3 3

1 1 2 1 1 1 1 3 3

, 2Re( ),

2Re( ), 2 Re( ) Re( ) Im( ) Im( ) ,

p p p
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  

    

    
. (D4-14)

Figure D4-2 shows the block diagram. This structure can be less sensitive to the
numerical singularity problems of the companion forms.

Figure D4-2: Alternate Third-Order ARMA Model (with added measurement noise)
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Example D4-2: Third-order ARMA Process
Combining the poles from Example D2-1 with the zeros of Example D3-1 we get the

transfer function equation (D4-15) and PSD of iy in Figure D4-3. As expected, the peak

and null of the individual AR and MA processes are evident.
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(D4-15)
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Figure D4-3: PSD of Example D4-2 (third-order ARMA model)

D5 Autoregressive Moving Average Process with Exogenous
Inputs (ARMAX)

Exogenous inputs ui are added to an ARMA process to obtain an ARMAX process:

1 1 2 2 0 1 1

1 1 2 2

... ...

...

i i i n i n i i m i m

i i i q i l

y y y y u u u

q q q q

     

  
    

  

      

   
. (D5-1)

Adding exogenous inputs does not change the characteristics of ARMA processes
described in the previous section, except that the output power spectra will also include
the effects of the iu terms.

We demonstrate how AR, MA, ARMA, or ARMAX processes can be extended to
MIMO cases using a two-input, two-output, third-order ARMAX model. One possible
implementation in state-space form is:
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(D5-2)

We have abused the subscript notation somewhat, but the meaning should be clear. In

this example the system has a different response to the exogenous inputs iu than to the

noise iq .

D6 Autoregressive Integrated Moving Average (ARIMA) Process
Measured outputs of many systems have nonzero means, trends, or other types of
possibly random long-term behavior. Hence the measurements are not statistically
stationary, but successive differences of measurements may be stationary. In this case
the system may be treated as an ARIMA process. Depending on the type of
nonstationary behavior, there are several approaches for handling the nonstationary
behavior. When the time series has slow random changes in level, it may be appropriate
to work with short sections of the data and treat each section as a stationary ARMA or
ARMAX process. In other cases, first, second or higher order differences of the data may
be computed and then modeled as ARMA/ARMAX processes. Alternately the
differencing can be included in an ARIMA model. For further information on linear
nonstationary models see Box et al. (2008, chapter 4).

D7 Discrete Model Summary
We have shown that discrete models can be developed from discretely sampled
continuous dynamic models, but they impose the restrictions that the sampling interval
must be uniform with no data dropouts, and the system must be statistically stationary.
Nonetheless, discrete ARMAX-type models are often used in applications when it is
difficult to develop models from first principles. For example, they are sometimes used
in process control (Åstrom 1980, Levine 1996) and biomedical (Bronzino 2006, Lu et al.
2001, Guler 2002) applications. When ARMAX coefficients cannot be computed from
first principles, they must be determined empirically from input-output data. This topic is
discussed in Chapter 12.


