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The surface integral on the right-hand side can be converted into la volume
integral by using the divergence theorem to give

fpas s (e | am

o

Since the choice of the volume v is arbitrary, we derive the following
differential version of the Clausius-Duhem inequality '

g r 1 q ‘
_z———‘tﬁ_-(—) (3.65)
dt a p ] |
or
@ a1y = d6 >0 3.66
—_—— + — . — —— 2 .
dt 68 pf* 1 p8? er ‘ (3:60)
In terms of components, we have |
ds ¥ 1 1 5 0 G
——_—t —g, . — ——g.f . > ;
(j[ 6, peql,l pazqt i ( )
or, elimination of r by using Eq. (3.58) gives
1
pOs —pti + 0;;D;; — Eq'ﬁ‘i =0 (3.68)

Again, the inequality implies an irreversible process and the equality repre-
sents a reversible process. By distinguishing the irreversible and reversible
processes, the directional characteristics of the energy transformation can be
clearly described by the second law of thermodynamics. I

In thermodynamics the internal energy u, entropy s, heat flux g,/and the
Cauchy stress o are all considered state functions that can be deterngined by
the state variables. The formulas that relate the state functions to the state
variables are called state equations or constitutive equations. From E!l purely
mechanical consideration, the only constitutive equation is that ffor the
Cauchy stress o or Piola-Kirchhoff stress X. .

For thermoelasticity one can expect that the state variables would be the
deformation gradient F and the temperature # since here u, s, q, and o are
determined completely by their current values. Thus, for an ideal ther:moclas-
tic behavior,

u=u(F,0), s=s(F, 0)

=]
]

a(F,0), o= o(F,0) (3.69)
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The situation becomes much more complex if the deformation is inelastic.
For example, the stress of a plastically deformed solid cannot be determined
by the current value of deformation F only. The history of the deformati{vln is
also necessary. Simple state equations or constitutive equations, such as
Eq. (3.69), cannot describe correctly the plastic deformation of solids. If #, x,
g, and o are assumed to be state functions, we face two fundamental
problems. First, we have to find or specify the set of all state variables.| For
example, it is necessary to know for a plastically deformed solid what qgther
variables are needed to uniquely describe the current state. As pointed out
previously, knowing only F and 6 will be insufficient to characterize a state in
the case of plastic deformation of solids, although they are adcquaté for
thermoelastic materials. It is very hard to enumerate all the relevant state
variables from macroscopic observations alone; microscopic deformation
considerations and some assumptions have to be made to use certain macro-
scopic observable variable(s) as the representative(s) of the micros¢opic
phenomena. Second the mathematical forms of the constitutive equations
should be determined after the state variables are chosen. This involves the
experimental evaluation and mathematical formalization. At times sgvere
experimental or mathematical difficulties may arise during this process. In
recent years great efforts have been made to study the constitutive equation
for various materials under different loading conditions, as described in this
book.

To solve the problem of specifying state variables, two different methods
are usually adopted. The first method ignores the problem of state variables
and assumes that u, s, g, and o are determined by the histories of F and 8,
and not by their current values only (Coleman 1964). Therefore these
quantities should be expressed as the functional, not functions, of F and 6.
The second method introduces the concept of internal (or hidden) variables.
In this method it is postulated that the current state of an inelastica!ly
deformed solid can be determined by the current values of F, 6 as well as a
set of internal variables. The history of the deformation is indirectly included
in the evolution of these internal variables. The material response will be
different if the values of the internal variables are different even though F, 0
are the same. We state this mathematically as

u=u(F,0,a;,)

s =s(F,0,a;)
qg=q(F,0,qa;)
o= o(F, 0, ) (8.70)

where @, 1 = 1,2,...,n, arc aset of n internal variables including mechani-
cal, or thermal, or even clectrical state variables. These variables can be
scalars, vectors, or tensors, although they are all denoted by scalar symbols
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here. The specific physical meaning for each internal variable and the actual
number n need to be chosen and identified for different materials and
different conditions. Different choices result in different models, which will
be discussed in the subsequent chapters. It should be pointed (::-ut here that,

instead of using @ as the state variable and s as the state functi
common in the literature to find s used as the state variable
state function. For example,

u=u(F,s,a;)

Similarly one can write 8, q, and « as functions of F, s, and a/

In closing this section, we introduce another thermodynami
called Helmholtz free energy:

W =u — s8

Note that & = ¢ + §8 + $6; thus Eq. (3.68) is rewritten as

; ; 1
—py — pnb + o;D;; + E(}EB.,— =0

3.6 PRINCIPLE OF MATERIAL OBJECTIVITY
OR FRAME INDIFFERENCE

on, it is quite
and # as the

(3.71)

¢ potential

(3.72)

(3.73)

|
Truesdell and Noll (1965) postulated three fundamental principles for a
purely mechanical constitutive equation. These are (1) principl}c of determi-
nation for stress, (2) principle of local action, and (3) principle of material

frame indifference. The first principle simply states that the stre
determined by the history of the motion of that body. The prir
action is that in determining the stress at a given particle, the m

5s in a body is
ciple of local
otion outside

an arbitrarily small neighborhood of it may be disrcgardcd. These two
principles are self-explanatory. We are more interested in the third principle,

since it introduces the concept of objectivity that is signific
consider the finite plasticity theory.

The detailed and rigorous treatment of the frame indiffere
can be found in any advance continuum mechanics book. H
present this principle and discuss various quantities under t
frame of reference,

According to the principle of material frame indifferenc

ant when we

nce principle
Tere we only
he change of

> constitutive

equations must be invariant under changes of reference frame. The change of

a time-space reference is given by

x*=c(t) + Q(1)x

(3.74)
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[nternal variables

For dissipative phenomena, the current state also depends on the past
history which is represented, in the method of local state, by the values g
each instant of other variables called internal variables,

Plasticity and viscoplasticity require the introduction of the plastic (or
viscoplastic) strain as a variable. For smal] strains, the plastic strain g is the
permanent strain associated with the relaxed configuration. This configur.
ation is obtained by ‘clastic unloading’, leading to the additive straip
decomposition:

Method of local state

e“{is on {I]}Se, dl) [ 1 5 1 1 & i}. i,‘:

¥ =W, T, €5 eP V). f
ici 1 in the form o
Jastoplasticity (or viscoplasticity) the strains appear only
e . o e t:
I:eir additive decomposition £ —£" = £°, 50 tha

W= W((e — &), T, V,) = W5, T, Vi)

which shows that:
aV e = dV/de = — lik Jli

— =P

The two internal variables related to the above decomposition may
formally be defined as: the plastic strain &°, and the thermoelastic strain g*
(including, as well, the possibility of thermal dilatation).

Other phenomena such as hardening, damage, [racture, require the
introduction of other internal variables of a less obvious nature. These
represent the internal state of matter (density of dislocations, crystalline
microstructure, configuration of microcracks and cavities, etc.) and there
are no means of measuring them by direct observation. They do not appear
explicitly either in the conservation laws or in the statement of the second
principle of thermodynamics. They are called internal variables, but in fact,
they are state variables which will be treated as observable ones.

There is no objective way of choosing the nature of the internal variables
best suited to the study of a phenomenon. The choice is dictated by
experience, physical feeling and very often by the type of application. They
will be defined in the different chapters as the need arises, For their general
study, they will be denoted by Vi, Vayoo s Vs Vi representing either a
scalar or a tensorial variable.

242 Thermodynamic potential, state laws

Once the state variables have been defined, we postulate the existence of a
thermodynamic potential from which the state laws can be derived.
Without entering into the details, let us say that the specification of a
function with a scalar value, concave with respect to 7, and convex with
respect to other variables, allows us to satisfy a priori the conditions of
thermodynamic stability imposed by the inequalities that can be derived
from the second principle. It is possible to work in an equivalent way with
different potentials. Here we choose the free specific energy potential W,

We now use the Clausius—Duhem inequality with:

to obtain: )
g A\ - v g sy @
e ' — |\ T—p——+V,—~— grad T=0.
(o - p%;):s + 0.8 — p(s + 6T)T payk k=T g
in this i lity
i i ancel some terms in this inequa
sical hypothesis permits us to cance ‘ . :
i (i.c&la?'lsdently y‘ie may imagine, first of all, an elastic deformation ta.];i:}gl
I;lac:l: at constant (T=0) and uniform (grad T=D) :empflr];jil;rf{:p\a= o
alters neither the plastic strain (&7 =0) nor the interna va.rlcdeform;;lions
For this to happen, it is necessary to consider that the elastic ey
] . .
c:aOnr occur at a time scale higher that those which would qfuijs.npnmw
validity of the hypothesis of local state, and lowe_r than those DdI |:212; 2
phenomena. Since the Clausius—-Duhem inequality holds regardle

particular £¢, it necessarily follows that:
o — p(éW/de") = 0. -
i i tion in
A ing this equality to hold, we now Imagine a thﬁjrmal d.eforma i n
?ﬁ“:‘_pg 0, V, =0, grad T =0. Then,since T is arbitrary, it follows that:
whicn g = TR e
s+ d¥/eT=0.
These expressions define the thermoelastic laws:
® o = p(\V/de"),
s=—¢V/eT.
We note that:
o = p(d¥/de%) = p(d¥/de) = — LAY [0eP)
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which shows that the stress is a variable associated with the elastic strain,
with the total strain, and with the plastic strain (with a minus sign).

In an analogous manner, we define the thermodynamic forces associated
with the internal variables by:

A, = p(dV¥/dV,).
These relations constitute the state laws;

the entropy s and the stress tensor ¢ having been defined elsewhere,
the specification of the thermodynamic potential ¥(e5, T, V,)
furnishes the coupled or uncoupled theories of thermo-
elasticity;— - e

in contrast, the variables A, associated with the internal variables,
which have not yet been introduced, are defined by the specific-
ation of the thermodynamic potential ¥(..., V,);

s, 6 and A4,,4,,..., A, constitute the associated variables. The
vector formed by these variables is the gradient of the function ¥ in
the space of the variables T, ¢, V,. This vector is normal to the
surface ¥ = constant.

The associated variables form a set of normal variables in duality with
the observable and internal state variables. Table 2.2 summarizes the set of
variables introduced in this way.

2.4.3  Dissipation, complementary laws

As we have seen, the thermodynamic potential allows us to write relations
between observable state variables and associated variables. However, for
internal variables it allows only the definition of their associated variables.
In order to describe the dissipation process, mainly the evolution of the
internal variables, a complementary formalism is needed. This is precisely
the objective of the dissipation potentials.

Intrinsic dissipation, thermal dissipation

— ‘
Taking into account the state laws and putting g = grad T, the Clausius-
Duhem inequality can be reduced to express the fact that dissipation is
necessarily positive:

® =08~ A4V, —GG/T=0.

We note that @ is a sum of the products of the force variables or dual

Method of local state

Table 2.2. Thermodynamic variables

State variables

Observabhle Internal

Associated variables
§_ o
i 5
£ o
ef -_—
M Ay

variables 6, A,, § with the respective flux variables £°, — Ij’,‘.. —g/T. Tl
sum of the first two terms: |

D, =0:" — A, V,

is ca]‘Ied the intrinsic dissipation (or mechanical dissipation). It consists «
plastic dissipation plus the dissipation associated with the evolution of t}

other internal variables: it is generally dissipated by the volume element
the form of heat. The last term:

(D = —-_"E';-:—E' T
2 F!T TEFEdT

is the thermal dissipation due to the conduction of heat.

Dissipation potential

In order to define the complementary laws related to the dissipatior
proccs‘& we postulate the existence of a dissipation potential (or pseudo-
potential) epfpressed as a continuous and convex scalar valued function ol
the flux variabjes, wherein the state variables may appear as parameters:

P(EPV,, G/T).
This ial is : g :
potentialis a positive convex function with g zero value at the origin of

the space ; P Ty
e ziu of the flux variables, £°, IV, 4/T. The complementary laws are
pressed by the normality property (or normal dissipativity):

The
thermody o —
Rormaj ¢ odynamic forces are the components of the vector grad 7]
0 the ¢ = —— : 5
the ¢ = constant surfaces in the space of the flux variables.
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incquality places on response functions,

conditions under which temperatures can
forms taken by response functions when the material is a fluid.

No one approach to dissipation is so general as to
include completely all the others, and each of the three
classes of theories has its domain of usefulness. It has,
for example, long appeared that the Navier-Stokes
equations can successfully describe the mechanical
behavior of water under ordinary conditions. On the
.-other hand, when . certain polyatomic gases, such as
carbon dioxide, are studied in shock tubesS and in
sonic absorption experiments,* it is found that, in
an appropriate range of density and temperature, at-
tenuation effects occur which can be well described,
not by the introduction of a single and constant bulk
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-Absorplion and Dispersion af Ulirasonic Waves (Academic Pross
Ine., New York, 1959). See also the critique by C, Truesdell,
J. Rational Mech. Analysis, 2, 643 (1953).

Teller, Aberdeen Proving Ground Rept,

Anglysis

3809 SN 4 HLLD W0 IHOMALOS A9

HONYIAIT
AVHEI TYOINHOAL vig

My

CREEINRD 38 AYW TRV SIHL f3unon
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viscosity, but rother by assuming that the ideslgas

law pu=R4 holds, with # the translational {or “active-
mode”) temperature, while accounting, in the consti-
tutive equations governing the heat capacity, for the
time required for the transfer of molecular motion
from the translational mode, to one, two, or several
internal modes. This is a classical example of a theory
of dissipation involving a finite number of internal
statt. varizbles; the internal variables being the amounts
- of energy associated with the various modes of molec-
ular motion. At elevated temperatures the ideal-gas
law may fail due to chemical dissociation or ionization;
the finite rates of the reactions of decomposition and

reassociation can then also give rise to pressure-volume -

relaxation phenomena.? .
Recent experience in high-polymer physics shows
that the mechanical behavior of many materials, in-
duding polymer melts and solutions, is more easily
described within the general theory of materials with
fading memory than by theories of the viscous-stress
type, which do not account at all for gradual stress
relaxation, or by theories which rest on a finite number
of internal state variables and which, therefore, give

rise to discrete relaxation spectra when linearized.
Using an zpproach to the thermodynamics of con-
tinua proposed by Coleman and Nol,® Coleman and
Mizel® have found the restrictions the second law
places on a class of theories of the viscous-stress type.
Later, Coleman®® developed 2 genéral theory of the
thermodynamics of materials with fading memory. Here
- we discuss phenomenological theories of dissipation
. which rest upon evolution equations for internal state
variables; we attempt to unify such theories by using
-the methods developed in Refs. 13 and 14 together
with techniques from the stability theory of nonlinear
differential equations. We consider materials for which
the basic local mechanical and thermal variables, such
as the stress tensor I, the heaf Hix e

speciic Helmholtz Irée energy ¥, and the speaific en-

tropy n, are detérmined thiough constitutive equations
“When_ the Tollowing “state variables” are Enown: The
temperature §, the deformation gradient F {or the
“strain”), the temperature gradient grads, and a set
* of N internal or *“hidden” state variables {ay, ---, ax).
We allow the rate of change of each of the « to be
governed by a (generally nonlinear) function f; of #
F, gradg, and the complete internal state {ay, -+, ay):

d!':fl'(e: FJ gmde: oy "'JO:N)) 1‘=1; e, N (1'1)
We first seek the general restrictions placed on theories

1 See, for example, the discussion of M, J. Lighthill, J. Fluid
Mech, 2, 1 (1957). Apparently, the first paper c:;gressmg this
diden js that of A, Einsteln, Sitzber. Akad. Wiss. Derlin Math.

- Phys. KL 380 (1920).

#B. D. Coleman and W. Noll, Arch. Rational Mech. Analysis
13, 167 {1963). . o

4B. D. Coleman and V. J. Mizel, J. Chem. Phys, 40, 1116
1964;.
¢ ¥ B, D. Coleman, Arch. Rationial Mech. Analysis 17, 1, 230
(1964).

of this type by the second law, in the form of the
Clausius-Duhem inequality. We then give conditions,
in terms of the thermodynamical functions, for dynami-

- cal stability of equilibrium solutions of the evolution

equations (1.1). After finding logical relations between
the various types of stability which can occur, we
discuss special aspects of the theory, such as integral
dissipation inequalities, the assignment of tempera-
tures to internal states, and the requirements of in-
variance. We conclude our study by illustrating the
general theory with its simplest nontrivial special case:
ideal gases with a single internal mede of molecular
motion,

2. THERMODYNAMIC PROCESSES

We consider a body & with material points X and
assume that the mechanical forces acting on & can
always be resolved into a body force field and 2 sym-
metric stress field. In particular, body couples, couple
stresses, and multipolar interactions of higher order
are assumed absent, We also assume there is no dif-
fusion of mass in @, but ® may deform and conduct
heat. Thus, a thermodynamic process for @ is described
by nine functions, of X and the time ¢, whose values
have the following physical interpretations:

(1) The spatial position x= (X, D in the motion 3.

(2) The symmetric Cauchy stress tensor T=T(X,1).

(3) The specific body force b=1b(X, ) Per unit mass
{exerted on ® at X by the external world, i.e., by other
bodies which do not intersect ®).

(4) The specific infernal energy e=¢(X, {} per unit
mass,

(5) The keat flux vector q=q(X, £).

(6) The keat supply r=r(X, {) per unit mass and
unit time (absorbed by ® at X and furnished by -
radiation from the external world).

(7} The specific entropy 5=3(X, £) per unit mass.

(8) The absolute lemperature 8=0(X, H >0,

(9) The internal state vector a= (X, £) =(oq, oz, =+ +,
ay); the numbers oy=ai(X, f) are the infernal state
varighles1® '

Such a set of nine functions, defined for all Xing
and all 4 is called here a thermodynamic process in
® if and only if it is compatible with the law of dalasice
of linear momentum and the law of balance of energy.
Under sufficient smoothness assumptions, the familiar
integral forms of these laws are equivalent to the field )
equations i '

pXx—divE=pb (2.1)
and”

pé—T+Lg-divg=pr. (22)

" Here p is the mass density, L= gradi is the velocity

" Qur present pair (F,a) forms a vector which Truesdell and
Toupin,” pp. 613-647, call the thermodynamic subsiate.

¥ C. Truesdell and R. A, Toupin, “The Classical Field Theo-<
ties)” in Encyclopedic of Physics, 5. Fiiigge, Ed. (Springer—Veriag,
Berlin, 1960), Vol. 3, Pt. 1.
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gradient, and T-L is the inner product of T and I; off the following implications of the Clausius-Duhem
i.e, T-L=Tr TLT with L7 the transpose of L. Since inequality: -

grad and div are the gradient and divergence with s . _

respect to x keeping # fixed, these operators refer to 120 whengver ?"0’ ¢=0, and g=0, (34)
spatial derivatives. A superposed dot denotes the ma- é<0 whenever F=0, 4=0, and g=0. (3.5
terial time derivative, i.e., the derivative with respect

to £ computed keeping X fixed. . The specific free energy +% (also called the “Helm-

To specify a thermodynamic process it suffices to Doltz free energy per unit mass”) is defined by
prescribe the seven functions x, T, ¢, q, %, 0, and . Y=ec—0. - (3.6)
The remaining functions b and r are then determined Since : _
by (2.1) and (2.2). J=i—by—p3, - (3.7

In continuum physics one usually identifies each .
material point X with its position X in a fixed reference (3-3) can be written . :
configuration ® and writes x=x(X, {). The gradient C By=—f—nf+8-F— (o) g g, {(3.8)
F of x(X, #) with respect to X, ‘ ‘ .

e s 23 and hence (3.2) yields also
£ B ) = GRAD ! ’ " s ’ - .

. (X, ADx(X, ) - ( ) ¥<0 whenever ¥=0, §=0, and g=0. (3.9)
is called the deformation gradient at X (or at X :
relative to the configuration ®. We consistently use 4. CONSTITUTIVE ASSUMPTIONS

the notation GRAD for the gradient in @®, i.e., the . ) .
gradient with respect t> X. For 2 scalar field over ®,  In the present theory the malerial at the point X is
stich as 0, an elementary ch.ain rule yields characterized by five response functions, §, 4, §, §,
and f, which give ¢, 4, §, ¢, and & at X when F, 6, g,

. . GRAD#=FT grads. (2.4) and « are known at X:
Since gradf occurs frequently in thermodynamics it is ¢=¢#(F, 4, g, o), . 4.1}
convenient to have a single symbol for this vector.
" We use the abbreviation : n=#F, 0, g, ¢, - 42
S g=grad6. (25) S=S(F) g, ‘I)a (4'3)
Because we assume that x(X, f) is smoothly in- ‘ 1=4(F, 4, g, o), (44)
vertible in its first variable, the inverse ¥ of F exists, a={(F, 0, g, a). {4.5)

and the velocity gradient L=gradt is given by The superposed caret in ¢, 4, é, and g serves to dis-

L=FF1, '(2,6) tinguish these functions from their values. Since fora

' given process the value of F depends not only on X
Let us call the tensor §, defined by and {, gut also on the choice of tlgee?eference configura-
S=pT(FT), (2.7) ton ®, the form of each of the response functions

. L . . . depends on @&. In a materially inkomogeneous body

the Pt?lG"Ktrcﬁ?_ﬂ' Stress lensor. Using this tensor we the functions ¥, 4, S, §, and £ will also vary with the’
can write (2.2) in the form . - material point X; although we do not render explicit

pi—pS-Ftdivg=yr. " (2.8) this possible dependence of response functions on X,

all the arguments we give here are valid equally for

3. THE CLAUSIUS-DUHEM INEQUALITY materially horogeneous and materally int-.mogeneous
- bodies., '

When /6 is regarded to be a flux of entropy due to  We sav that a thermodynamic précess is admissible

heat flow and r/6 a supply of entropy from radiation, if T is compatible with the constifufive_equations
the specific rate 4 of production.of entropy is given by (4.1)-(45).

— o VT Of course, in assuming (4.1)-(4.5) we are using

oy =pi—{(pr/0) ~div(a/6}]. 31) Truesdell’s principle of equipresence, which asserts that

The Clausius-Dukem inequality asserts that the rate )a quantity present as an independent variable in one
of production of entropy is not negative: — constitutive equation of a‘material should be so present
v>0 (3.2) in all, unless its presence contradicts some general

) = . b law of physics or the assumed symmetry of the ma-

For each thermodynarmic process the energy-balance \ terial ®® In the following section we follow the ap-

equation (2.8) permits us to write (3.1) in the form WG Trassdel, J. Pure Appl. Math. 30, 111 (1951).

r : ™ C. Truesdell, Appl. Mech. Rev, 12, 75 (1959), rcprinted
v=1—(é/6)-+6"'8-F— (/66" q-2. (3.3) with additions in A pg ied Meckanics Srm':ys {Spartan, Washing-
. L. . . ton, D.C., 1966), pp. 225-236; see also C. Truesdeli and R. A.

From this equation and the inequality {3.2) we read Toupin,’ pp. 703—';04.
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is that the function 4* have the special form (11.19).
A similar result holds for ay, a3, ete.

In view of the fact that temperatures of internal
states are often regarded as definable only in terms of
statistical concepts, we think it worthwhile to make the

following observation. The resuits of this section sug-.

gest that if we accept the general assumptions made
bere and in Secs. 4 and S, then the question of whether
we can associate a temperature §; with a particular
internal state variable «; becomes one that can be
settled on purely phenomenological grounds, namely by
inspection of the caloric equation of state and the
equation governing. the evolution of a; in a thermo-

- dynamic process.

12. OBJECTIVITY

In Sec. 5 we found the restrictions placed on the

response functions ¢, 4, S, §, and f of (4.1)~(4.5)
by the postulate of positive production of entropy.
The principle of material frame indifference,® which
states that an admissible process must remain ad-
missible after a change of frame, imposes further re-

strictions on response functions.

In our present theory a change of frame is charac-
terized by a time-dependent otthogonal tensor Q. The
scalars 6, ¢ , and ¥ are unaffected by a change of
frame, but F, g, q, and T transform as follows:

F-QF,
g—~Qg,
Qg
" T-QTQT. (12.1)

The manner in which the internal state vector a=
(e, *++, ay) transforms under a change of frame
depends, of course, on the physical interpretation given
to the components «: of « and therefore varies with
the application in mind. For definiteness we assume
here that « is an ordered N-tuple of scalars, each of
which remains invariant upon a change of frame; i.e.,
we assume that simultaneously with (12.1) we have

e—ra. . 5 {12.2)

(This is the case, for example, when each a; represents
the degree of advancement of a chemical reaction, the
fraction of the total energy in a certain internal mode
of molecular motion, or the probability that an internal
degree of freedom is in 2 particular quantum state.)
It follows from (12.2} that the response functions of the
present theory are compatible with material frame
indifference if and only if they obey, for each orthogenal

2 W, Noll; Arch. Rational Mech. Analysis 2, 197 (1958), who
called it the ‘principle of objectivity of material properties ™

tensor Q, the-following identities in F, 6, o, and g:
$(F, 0, ) =(QF, 4, o),
- #(F, 8, o) =9(QF, 4, «),
Q7(F, 8, ©)QT=T(QF, 0, w),
Q4(¥, 6, ¢, 0) =(QF, 4, Qg, «),
- K(F,6,g o) =f(QF,6,Qg, «).  (12.3)

These identities can be used to derive the following’
reduced forms of our constitutive equations:

y=y1(C, 8, o),
7=9'(C, 6, o),
T=FTYC, §, ))F7, ..
q=Fq'(C, 4, F'g, o),

a=£(C, 0, Fg, o), - (12.4)

where
C=FTF ) K (12.5)

is the right Cauchy-Green lensor; of course, by (2.4)
and (2.5), F7g is just GRAD®. In terms of the response
functions introduced here, the entropy relation (5.16)
may be written :

7= —agp" (12.6)
and the stress relation (5.17) becomes
T=2004". (12.7)

One mignt imagine that in some applications «
could represent a vector of dimension three transforming
as a spatial position vector under a change of frame,
but such an interpretation for w is not compatible
with our constitutive equation (4.5). For, if

= Qu, ' (12.5)

then for each time-dependent orthogonal tensor Q, f
must obey the identity :

(Qa)'=1(QF, 4, Qg, Qq), (129) .
where 4 is given by (4.5). Since . o
(Qu)'=Qe+Qu=Qf(F, 6, g, 0)+-Qq, (12.10)
when Q () =1, (12.9) yields

Qea=0, (12.11)

which equation must hold for all choices of Q at time £
But, when Q (/) =1, the only restriction on. Q) is that
this tensor be skew, Hence (12.11) states that Wa=0
for all skew tensors W, which implies that ¢=0. In
other words, if « behaves as a spaticl three-vector under
changes of frame, then (4.5) must be reploced by the
trivial equations f=0, a=0.






