according to Harl?
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cules helps to explain the fact that the spacing

Planes in the C-cell (3.429 A) is less than the spacing

even though the mole-
cular centers are not directly above each other along a

of the.(001) planes (3.748 &),

line normal to (001). From the figure, it can
that there are no Oy groups;
_also true of -the other phases

of Qg as well a
known phases of Nj,

CO, and F,.

A discussion of the packing of molecules in -0y and
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1. INTRODUCTION

for the dissipative effects which, in addition
conduction,’ accompany deformation.

Stokes Tl

scription of dissipation assumes that the entire past
history of the strain influences the stress in a2 manner
compatible with a principle of fading memory.! A

third approach is to postulate the existence of internal

state vanables whith infuence the free

whose Tate of Change s governed by differential equa-

tions In whichi The strai appears. T
M "

! Here we have in mind the fading-memory postulate intro-
Nolit* and recently developed from a set

duced by Coleman and 3
of elementary axioms by Coleman and Mizel .t

?8. D. Coleman and W, Noll, Arch. Rational Mech.
6, 355 (1960},

3B. D. Coleman and W, Noli, Rev. Mod. Phys. 33, 239 (1961);

36, 1103 (1964).
*B. D. Coleman and V.
sis 23, BT (1966).

=

-

CRYSTAL STRUCTURE OF ALPHA-gXYC

are 3.307 & center to center, and
which are 3.41 A, The orientation of the mole-

this ahsence of dimers is
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1 general restrictions which the Clausius—Duhem
we anzlyze various types of dynamical stability that can be exhibited by solutions of the intemal evolution
integral dissipation inequalities,

In phenomenological theories of the dynamical be-
havior of continua there are several ways of accounting.

The oldest and
simplest way is to introd viscous stress w

J. Mizel, Arch. Rational Macl. Analy.
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incquality places on response functions,

conditions under which temperatures can
forms taken by response functions when the material is a fluid.

No one approach to dissipation is so general as to
include completely all the others, and each of the three
classes of theories has its domain of usefulness. It has,
for example, long appeared that the Navier-Stokes
equations can successfully describe the mechanical
behavior of water under ordinary conditions. On the
.-other hand, when . certain polyatomic gases, such as
carbon dioxide, are studied in shock tubesS and in
sonic absorption experiments,* it is found that, in
an appropriate range of density and temperature, at-
tenuation effects occur which can be well described,
not by the introduction of a single and constant bulk

to heat

(L

and SH. A, Bethe and E.

No. X-117, 1041,

*E. F, Greene, G. R. Cowan, and . F. Hornig, J. Chem.
Phys. 19, 427 (1951); 21, 617 {1953).

'F. J. Smiley, E. H. Winkler, and T. K- Slawsky, J. Chem.
Phys. 20, 923 {1932),

W, Griffith, 13, Brickl, and V., Binckman, Phys. Rev, 102,
1209 {1956}. . ]

*G. W, Pierce, Proc. Acad. Sci. Amsterdam 60, 271 (1925),

M K. F. Herzfeld and F. O. Rice, Phys. Rev. 31, 691 (1928},
- " A survey is given by K. F. Herzfeld and T. A. Litovitz,
-Absorplion and Dispersion af Ulirasonic Waves (Academic Pross
Ine., New York, 1959). See also the critique by C, Truesdell,
J. Rational Mech. Analysis, 2, 643 (1953).

Teller, Aberdeen Proving Ground Rept,
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viscosity, but rother by assuming that the ideslgas

law pu=R4 holds, with # the translational {or “active-
mode”) temperature, while accounting, in the consti-
tutive equations governing the heat capacity, for the
time required for the transfer of molecular motion
from the translational mode, to one, two, or several
internal modes. This is a classical example of a theory
of dissipation involving a finite number of internal
statt. varizbles; the internal variables being the amounts
- of energy associated with the various modes of molec-
ular motion. At elevated temperatures the ideal-gas
law may fail due to chemical dissociation or ionization;
the finite rates of the reactions of decomposition and

reassociation can then also give rise to pressure-volume -

relaxation phenomena.? .
Recent experience in high-polymer physics shows
that the mechanical behavior of many materials, in-
duding polymer melts and solutions, is more easily
described within the general theory of materials with
fading memory than by theories of the viscous-stress
type, which do not account at all for gradual stress
relaxation, or by theories which rest on a finite number
of internal state variables and which, therefore, give

rise to discrete relaxation spectra when linearized.
Using an zpproach to the thermodynamics of con-
tinua proposed by Coleman and Nol,® Coleman and
Mizel® have found the restrictions the second law
places on a class of theories of the viscous-stress type.
Later, Coleman®® developed 2 genéral theory of the
thermodynamics of materials with fading memory. Here
- we discuss phenomenological theories of dissipation
. which rest upon evolution equations for internal state
variables; we attempt to unify such theories by using
-the methods developed in Refs. 13 and 14 together
with techniques from the stability theory of nonlinear
differential equations. We consider materials for which
the basic local mechanical and thermal variables, such
as the stress tensor I, the heaf Hix e

speciic Helmholtz Irée energy ¥, and the speaific en-

tropy n, are detérmined thiough constitutive equations
“When_ the Tollowing “state variables” are Enown: The
temperature §, the deformation gradient F {or the
“strain”), the temperature gradient grads, and a set
* of N internal or *“hidden” state variables {ay, ---, ax).
We allow the rate of change of each of the « to be
governed by a (generally nonlinear) function f; of #
F, gradg, and the complete internal state {ay, -+, ay):

d!':fl'(e: FJ gmde: oy "'JO:N)) 1‘=1; e, N (1'1)
We first seek the general restrictions placed on theories

1 See, for example, the discussion of M, J. Lighthill, J. Fluid
Mech, 2, 1 (1957). Apparently, the first paper c:;gressmg this
diden js that of A, Einsteln, Sitzber. Akad. Wiss. Derlin Math.

- Phys. KL 380 (1920).

#B. D. Coleman and W. Noll, Arch. Rational Mech. Analysis
13, 167 {1963). . o

4B. D. Coleman and V. J. Mizel, J. Chem. Phys, 40, 1116
1964;.
¢ ¥ B, D. Coleman, Arch. Rationial Mech. Analysis 17, 1, 230
(1964).

of this type by the second law, in the form of the
Clausius-Duhem inequality. We then give conditions,
in terms of the thermodynamical functions, for dynami-

- cal stability of equilibrium solutions of the evolution

equations (1.1). After finding logical relations between
the various types of stability which can occur, we
discuss special aspects of the theory, such as integral
dissipation inequalities, the assignment of tempera-
tures to internal states, and the requirements of in-
variance. We conclude our study by illustrating the
general theory with its simplest nontrivial special case:
ideal gases with a single internal mede of molecular
motion,

2. THERMODYNAMIC PROCESSES

We consider a body & with material points X and
assume that the mechanical forces acting on & can
always be resolved into a body force field and 2 sym-
metric stress field. In particular, body couples, couple
stresses, and multipolar interactions of higher order
are assumed absent, We also assume there is no dif-
fusion of mass in @, but ® may deform and conduct
heat. Thus, a thermodynamic process for @ is described
by nine functions, of X and the time ¢, whose values
have the following physical interpretations:

(1) The spatial position x= (X, D in the motion 3.

(2) The symmetric Cauchy stress tensor T=T(X,1).

(3) The specific body force b=1b(X, ) Per unit mass
{exerted on ® at X by the external world, i.e., by other
bodies which do not intersect ®).

(4) The specific infernal energy e=¢(X, {} per unit
mass,

(5) The keat flux vector q=q(X, £).

(6) The keat supply r=r(X, {) per unit mass and
unit time (absorbed by ® at X and furnished by -
radiation from the external world).

(7} The specific entropy 5=3(X, £) per unit mass.

(8) The absolute lemperature 8=0(X, H >0,

(9) The internal state vector a= (X, £) =(oq, oz, =+ +,
ay); the numbers oy=ai(X, f) are the infernal state
varighles1® '

Such a set of nine functions, defined for all Xing
and all 4 is called here a thermodynamic process in
® if and only if it is compatible with the law of dalasice
of linear momentum and the law of balance of energy.
Under sufficient smoothness assumptions, the familiar
integral forms of these laws are equivalent to the field )
equations i '

pXx—divE=pb (2.1)
and”

pé—T+Lg-divg=pr. (22)

" Here p is the mass density, L= gradi is the velocity

" Qur present pair (F,a) forms a vector which Truesdell and
Toupin,” pp. 613-647, call the thermodynamic subsiate.

¥ C. Truesdell and R. A, Toupin, “The Classical Field Theo-<
ties)” in Encyclopedic of Physics, 5. Fiiigge, Ed. (Springer—Veriag,
Berlin, 1960), Vol. 3, Pt. 1.
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gradient, and T-L is the inner product of T and I; off the following implications of the Clausius-Duhem
i.e, T-L=Tr TLT with L7 the transpose of L. Since inequality: -

grad and div are the gradient and divergence with s . _

respect to x keeping # fixed, these operators refer to 120 whengver ?"0’ ¢=0, and g=0, (34)
spatial derivatives. A superposed dot denotes the ma- é<0 whenever F=0, 4=0, and g=0. (3.5
terial time derivative, i.e., the derivative with respect

to £ computed keeping X fixed. . The specific free energy +% (also called the “Helm-

To specify a thermodynamic process it suffices to Doltz free energy per unit mass”) is defined by
prescribe the seven functions x, T, ¢, q, %, 0, and . Y=ec—0. - (3.6)
The remaining functions b and r are then determined Since : _
by (2.1) and (2.2). J=i—by—p3, - (3.7

In continuum physics one usually identifies each .
material point X with its position X in a fixed reference (3-3) can be written . :
configuration ® and writes x=x(X, {). The gradient C By=—f—nf+8-F— (o) g g, {(3.8)
F of x(X, #) with respect to X, ‘ ‘ .

e s 23 and hence (3.2) yields also
£ B ) = GRAD ! ’ " s ’ - .

. (X, ADx(X, ) - ( ) ¥<0 whenever ¥=0, §=0, and g=0. (3.9)
is called the deformation gradient at X (or at X :
relative to the configuration ®. We consistently use 4. CONSTITUTIVE ASSUMPTIONS

the notation GRAD for the gradient in @®, i.e., the . ) .
gradient with respect t> X. For 2 scalar field over ®,  In the present theory the malerial at the point X is
stich as 0, an elementary ch.ain rule yields characterized by five response functions, §, 4, §, §,
and f, which give ¢, 4, §, ¢, and & at X when F, 6, g,

. . GRAD#=FT grads. (2.4) and « are known at X:
Since gradf occurs frequently in thermodynamics it is ¢=¢#(F, 4, g, o), . 4.1}
convenient to have a single symbol for this vector.
" We use the abbreviation : n=#F, 0, g, ¢, - 42
S g=grad6. (25) S=S(F) g, ‘I)a (4'3)
Because we assume that x(X, f) is smoothly in- ‘ 1=4(F, 4, g, o), (44)
vertible in its first variable, the inverse ¥ of F exists, a={(F, 0, g, a). {4.5)

and the velocity gradient L=gradt is given by The superposed caret in ¢, 4, é, and g serves to dis-

L=FF1, '(2,6) tinguish these functions from their values. Since fora

' given process the value of F depends not only on X
Let us call the tensor §, defined by and {, gut also on the choice of tlgee?eference configura-
S=pT(FT), (2.7) ton ®, the form of each of the response functions

. L . . . depends on @&. In a materially inkomogeneous body

the Pt?lG"Ktrcﬁ?_ﬂ' Stress lensor. Using this tensor we the functions ¥, 4, S, §, and £ will also vary with the’
can write (2.2) in the form . - material point X; although we do not render explicit

pi—pS-Ftdivg=yr. " (2.8) this possible dependence of response functions on X,

all the arguments we give here are valid equally for

3. THE CLAUSIUS-DUHEM INEQUALITY materially horogeneous and materally int-.mogeneous
- bodies., '

When /6 is regarded to be a flux of entropy due to  We sav that a thermodynamic précess is admissible

heat flow and r/6 a supply of entropy from radiation, if T is compatible with the constifufive_equations
the specific rate 4 of production.of entropy is given by (4.1)-(45).

— o VT Of course, in assuming (4.1)-(4.5) we are using

oy =pi—{(pr/0) ~div(a/6}]. 31) Truesdell’s principle of equipresence, which asserts that

The Clausius-Dukem inequality asserts that the rate )a quantity present as an independent variable in one
of production of entropy is not negative: — constitutive equation of a‘material should be so present
v>0 (3.2) in all, unless its presence contradicts some general

) = . b law of physics or the assumed symmetry of the ma-

For each thermodynarmic process the energy-balance \ terial ®® In the following section we follow the ap-

equation (2.8) permits us to write (3.1) in the form WG Trassdel, J. Pure Appl. Math. 30, 111 (1951).

r : ™ C. Truesdell, Appl. Mech. Rev, 12, 75 (1959), rcprinted
v=1—(é/6)-+6"'8-F— (/66" q-2. (3.3) with additions in A pg ied Meckanics Srm':ys {Spartan, Washing-
. L. . . ton, D.C., 1966), pp. 225-236; see also C. Truesdeli and R. A.

From this equation and the inequality {3.2) we read Toupin,’ pp. 703—';04.
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proach of Coleman and Mizel*® who regarded the

Clausius-Duhen inequality as included among the laws
“of physics which can cause a separation of effects,
i.e,, which can be used to show that certain response
functions must be independent of certajn variables.
In fact, we shall show that the derivatives of ¢, #,
and 8 with respect to g must be zero.2t

5. CONSEQUENCES OF THE SECOND LAW

Within our present framework the second law of
thermodynamics is given a precisé mathematical mean-
ing by the following postulate of positive production of
enlropy®: -

Every admissible thermodynamic process in ® musl
obey the inequalily (3.2) af each time t and Jor.all ma-
terial points X in @®,

We now seek the restrictions this postulate places
on the response functions in our basic constitutive
equations (4.1)-(4.5). ’ )

It follows from (4.1) that in each admissible process
¥=(360) P+ () 0-+ (08} &+ () - 6, (5.1)

where
aﬂ;(Fy 8 g, “) = (3/68))F(F, 6, g, “)5 (52)

the components of 3¢ and 3, relative to an ortho- .
normal basis ey, €, e;, are given by

[8.4(F, 6, g, o) Ji=(a/ 35{)\5(:[?; 8w,
: i=1, 2,3,
[OrE(F, 0, g, @) Tis=(3/aF;)¥(F, 8, g, o),
i,7=1,2,3, (5.3

with g; and Fi; the components of g and F; 3. is the
N-vector :

aa';‘_"'[au:\r’: acr:}z: Tty R.YSEJ). (54)
and, of course,
I+ 8 =8epfiiest-Oabliat e+ » +Buybiy.  (5.5)

Substituting (5.1) into (3.8) we obtain the following
expression for the specific rate of prodiction of entropy
.in an admissible process:

8y=(S—3xf) - F—(3af+n)é
: =3 E—duP 4~ (1/s6)q-8.  (5.6)
Suppose that we are given an initial time fy, an

initial internal state vector (X} for each X in ®,

a motion x of &, and a time-dependent temperature
distribution & over ®. Suppose further that w, F=
GRADy, 0, and g=gradd, as functions of X and {,
are smooth enough to ensure the existence of a unique

®B. D. Coleman and V. J. Mizel, Arch, Rational Mech. Analy-
sis 13, 245 (1963}. .

3 A similar result holds in the general theory of materials with
fading memory; cf. Coleman,® Theorem 1, p, 19, '

2 See Coleman and Noll,? .
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solution = a(X, £) of (4.5) for all # in some interval
Lfo, fot7] with «(X, &) = ao(X). Then, using the con-
stitutive equations (4.1)-(4.5) we can compute ¢, »,
e=y+6y, 5, and q at each X for all £ in [&, fo-+r].
Thus to each sufficiently smooth choice of g, x, and 8
there corresponds a unique admissible thermodynamic
process in @ for some time interval [#, 7).

Now, let (Fy, &, g, o) be an arbitrary point in
the domain of the response functions , 4, S, §, and f
for that material point X’ of @ which occupies the
place X’ in ®. Choosing arbitrarily a time #, a tensor A,
a vector &, and a scalar g, we consider the motion %
and the time-dependent temperature distribution 9 de-
fined by - '

£(X, ) =X'+[Fok-(i~1) AT X—X,
6(X, ) =8+ (1—t)a+[got (t—tr}a]- R[X-X7],

(5.7 -
for all X in @ and all £>¢ sufficiently close to #. It
follows' from the observation made in the previous
paragraph that the fields shown in (5.7) and the.
initial condition «(X, f) = ey determine an admissible
thermodynamic process in @ for £ in some time interval

Lo, Lotr]. Furthermore, this process has the following
properties: .

F(X’, fo) =Fo,
g(X': !0) =go,

0(X’, &) =f,

w(X7, b} = e, (5.8)

and
FOU, t)=A, 06X, t)=a, g(X,t)=sa (59)

Hence, by (4.1)-(4.5), for this process at the point
X’ and the time 1, the equation (5.6) becomes

Oy =[S (¥s, 6, g, a) — 3w (Fo, 0o, B, @) ]-A
- [3655(1_“0, bar 8o, @) +7(Fo, o, £, w) e
—~05{(Fo, b6, g0, w) -2
— 3.5 (Fo, &, g0, o) - £ (Fo, 6o, g, @)
— (pefo)} ™G (Fo, 60, Bs, o)~ Ro, (5.10)
where pq is the mass density at X’ corresponding to the

. deformation gradient Fo. It clearly follows from (5.10)

that in order to have ¥>0 at X' and ¢4, for every choice
of A, a, and a, we must have

S(Ft 6, 8 ) '_"aﬂ';(F: & g «), (5.1 1)
ﬁ(F, 9, g’ a) = _aﬂ$(F, a’ g3 u)’ (5‘12)
33(¥, 6, g, ) =0, (5.13)

I (F, 0, 8, «) - £(F, 8, g, &) +(o0)"'G(F, 8, g, «)-g<0,
(5.14)

where, for convenience, we have dropped the subscript 0
in (Fo, 8, go, o). Since this point was arbitrarily
chosen in the domain of our response functions, we




have the following four consequences of our postulace
-4 0f positive entropy production®s; -

Ry

- () The response functions ¥, %, and § are independent
of g5 ie, ¥, 4, ond S are given by functions of F, 8, and
e clone, ‘
’1&2';(1?: 8, «), 7?=ﬁ(Fr 8, “):
S=8(F, 9, o). (5.15)

(i) P determines § through the entropy relation (5.12);
te,

. =—3(F, 9, ). (5.16)
(i) ¥ determines § through the siress relation (5.11);

i.e,
S=8r{(F, 6, o). (5.17)

( (ivi) ¥, £, and § obey the general dissipation inequality
5.14). '

Conversely, using (5.6) it is easily verified that when
the conditions (i)~(iv) hold every admissible process
in ® obeys (3.2). '

It follows from (2.7) and (5.17) that the symmetric
Cauchy stress tensor T is given by the equation

T=PaHE(F} 6, «)F7

nd hence is a function of F, ¢, and «.
The general dissipation inequality (5.14) implies that
‘When g=0 the internal dissipation inequality,

= 24(F,0, o) -£(F, 6,0, )<0,  (5.9)
{ _polds, and when 3,4+ f=0 the heat-conduction ineguolity,

(5.18)

§(¥, 0, 5, «)-g<0, (5.20)
holds. ‘
If we define the inlernal dissipetion o by
0'=5‘(F,- 6, €, u)
= "g_lau\E(F: 8, «) -1(F, 0, g, o}, (3.21)

ve can write the internal-dissipation inequality (5.19)
n the form ﬁ
#(F, 8,0, o) >0. - (5.22)

urther, we may conclude from (4.5), (5.1),and (5.13)
hat ‘

o=—0. whenever F=0 and é=0, (5.23)
-and this result when combined with (3.8) yields
o=y whenever F=0, =0, and g=0. (5.24)

Orne ca’ﬁnot generally resolve the inequality >0 into
an internal dissipation inequality 6.8+ &0 holding for
onzero g and n heat-conduction inequality q-g<0

2 Noke odded in proof; We have recently seen a report by K. C.
Valanis {Towa State University Bulletin No. 527 giving a theorem
analogous to this. See also the article by E. T. Onat which will
.4ppear in the Proceedings of the IUTAM Symposium on Irre.
sibbe Aspects of Continuum Mechanies, Viennn, June 1966 {to
published).

THERMODYNAMICS WITH INTERNAL STATE VARIABLES

601

holding for nonzero &. Such a resolution is valid,
however, when the following conditions are met: that
f(F, 6, g «) be independent of g and §(F, 4, g, &)
be independent of «. These conditions do not follow
from our general assumptions, Yet, the first condition
does often follow from special assumptions of linearity
and material symmetry; therefore, it is worth noting
that :

Of(F, 0,8 «)=0=¢(F, 4, g, )20
~ forall F,4, g, and « (5.25)

. It is observed that the role played by & in our present
theory is nearly identical to that played by the quantity
which Coleman in his articles on materials with fading
memory™ also denotes by ¢ and calls the internal dis-
sipation. For example, our Eqs. (5.21) and (5.15)-
(5.17) here yield the equation

=8 F—nf—bo, {5.26)

which has the same form as Eq. (8.1) on p. 22 of
Ref. 15. However, in our present theory, if 3,f is not
identically zero, ¢ may be négative for certain values
of g, albeit (5.22) tells us that ¢>0 whenever g=0.
Using (3.6) we can write (5.26) in the form
é=8F4-85j--00; (5.27)
therefore, )
e=—é/0 whenever ¥=0 and 7=0, (5.28)
and . ‘
o=7n whenever F=0 and ¢=0. (5.29)

Since (2.8) and (5.27) fmply

e=i—~8"(r—p~ divg),
we also have

(3.30)

“{3.31)

Thus, we can assert that in general o measures the
raie v al which the entropy of o material point wonld
change. if the total rate pr—divg of addition of heat were
sel equal fo zero. In particular, o =7 whenerer the strain
and energy are held constant momentarily.

=% whenever pr—divq=0.

6. STABILITY OF EQUILIBRIUM STATES

Throughout this section we focus our attention on one
arbitrary material point X in ®&. A triplet (F*, 6%, «*)
with : ‘ :

f(F*, 6%, 0, «*) =0 (6.1)
is called an eguilibrium state for the material at Y.
The domain of allraction at constant strain and lem-
perature of an equilibrium state (F*, ¢*, o*) is the
set D(F* 6%, o*) of rll w such that the solution
a=«(f) of the ipitial vzlue problem,

a=f(F* 6* 0, a) (6.2)
with

o{0) = o, (6.3
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exists for all £>0.and tends to of, .
' e()—>a* as oo, - (6.4)

An equilibrium state (F*, §*, «*) is said to be (locally)
asympiotically stable et constant skrain and temperature
it D(F*, 6*, «*) contains a nelghborhood of ot ie.,
if there exists a $>>0 such that every internal state
vector oy with | eg—o* | <¢ is in D(F¥, o, .a*).

Let (F*, 6*, «*) be an equilibrium state for the’

‘material at X, and let « be in D(F*, 6%, o). It follows

from the argument containing Eqs. (5.7) that there

exists at least one admissible thermodynamic process

with' the property that at X .
@(0)=ay, while for all {20, F()=F+

6(f) =6*, and g()=0. (6.5)

1t follows from (3.9) that for this process () <y(0),

or, by (5.15},,
IP(F*, 6, “(‘))S¢(F*? 8*: o). (6.6)

But, since-ay is assumed to be in D(F*, ¢* o*), it
follows from (6.4) and the continuity of ¢ that

lit:\i(F‘, &%, a())=F(F, 0%, o). (6.7)
Combining (6.6) and (6.7) we obtain
V(B 6%, o*) <P(F*, 6, o). (6.8)

In words: If the internal state vector « is in the domain
of attraction of the equilibrium state (F*, ¢*, o*) qf
constant sirain and lemperature, then the free energy
corresponding lo (F*, 6%, o) camtol be less than hat
corresponding to (F*, 6%, o). .

The following theorem follows at once from (6.8}
and the definition of asymptotic stability: If (F*, %, o*)
is an eguilibrium State that is asymplotically stable at
conslont strain and lemperainre, then

P(F*, 6%, &) 2P(F*, 6, o¥) {6.9)

Jor ail inlernal state vectors « in some neighborhood of o*,
and, consequently, '

ac\a(F*) 8*1 'I) th=0. (6'10)

The equation (6.10) may be called the equation of
internal equilibrium. In deriving this equation we have,
of course, assumed that the variables ay, +++, ay have
been chosen so as to be free from constraints of the
type h(«)=0. Thus, when changes in the internal
state are due to chemical reactions, «; is not 2 con-
centration but rather the degree of adnanceme:nt of the
ith reaction, in the sense in which the term is used by
De Donder® In this case —3q¢ is the affinity of the
ith reaction, and the relation 9,¥=0 is just De

#Th, D¢ Donder, Legons de Thermodynamique o de Chimie
Physique (F. H. van den Dungen and G. van Lerberghe,
Paris, 1920); p. 117,
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-Donder’s form of the equation of chemical equilibrium
for that reaction ‘

We say that an equilibrium state (F*, 6%, o*) is
Lyapunov stable af constant strain and temperature if for
each >0 there exists a §,>0 such that every solution
a(f) of the differential equation (6.2) with

: I E(O) —a* I <8¢ .
has the property that
| a(fy —o*| <e

(6:11)

{6.12)

for all 120, A :
Roughly speaking, (F*, 6*, o*) is Lyapunov stable

at constant strain and temperature if holding F and 8

fixed for all £ and initially setting the internal state

vector « sufficiently near to o* guarantees that o will

remain near to o* for sl £, . :
Since it follows from (5.19) that for all «

QP(F*, 6%, 0)-£(F%, 6%, 0, ) <0,  (6.13)

¥ (¥*, 5, a}, as a function of «, can serve asa Lyapunov
Junction® for the equation (6.2), and familiar results
in the theory of ordinary differential equations? yield
the following theorem: Let (F*, 6%, o*) be an equilibrium
slale and suppose that, in some neighborkood of o, the
Jollowing strengthened form of (6.9) holds:

HF% 0%, ) >P(F%, 0%, o) i aa®. (6.19)

Then (F*, 6*, o*) is Lyapunov siable al constant strain
and temperature,
If

v>0 whenever ¥=0, §=0, g=0, but a0, (6.15)

then we say that the material under consideration
is strictly dissipative. It is not difficult to show that
(4.5), (5.21), and (5.24) imply the following proposi-
toun: 4 malerial is sirictly dissipative if and only if the .
intlernal dissipation inequality (5.19) is strict in the sense

that ‘
3P (F*, 0%, o) -£(F*, 6%, 0, ) <0 {6.16)

Jor every triplet (F*, 6%, «) that is not an equilibrium
state. .
Suppose that (F*, 6%, *) is an equilibrium state
and that (6.16) holds for all «3#o* in some neighbor-
hood M(a*) of o*; if (F*, 6%, o) is asymptotically
stable at constant strain and temperature then the:
argument which gave us (6.8) also gives us the stronger

#Th. De Don&er, Bull. Ciasse Sci. Acad. Roy. Belg. 5, 7, 197,

205 (1922).

% See, for example, I. Prigogine and R. Defay, Chemical Ther-
medynamics, Translated by D. H. Everett (Longmans Green and
Co., Ltd., London, 1954}, Cha;)s. 1-4, particularly Eq. (3.29)
on P 40 and E% (4.29) on g 52,

¥ J. Wel, J. Chem, P ys. 36, 1578 (1962}, has pointed out that
thermodynamic quentities, such as the free cnergy, can yield
Lyapunov functions for investipations of stability properties of
chemicel reactions, )

¥ See, for example, P, Hartman, Ordinary Differentiol Equalions
(Jobn Wiley & Sons, Inc., New York, 1964), pp. 37-40, particu.
larly Theorem 8.1.




J result (6.14) for all « in J(a*). On the other hand,

-3 it follows from Lyaptmov’s theorem on asymptotic

stability™ that if (6.14) and (6.16) hold for all az¢o*
in a neighborhood of o, then (F*, §*, o*) is asymp-
totically stable. Combining these observations with the
remark contzining (6.14), we obtain' the following
theorem: Lef (F*, 6*, o*) e an equilibrinm stale with
the property the” (6.16) holds Jor all asto* in some
neighborhood of o*. Then '

B (F% %, o*) is asymplotically stable at constant
sirain and temperattire- if and only if (6.14) holds in
" | some neighborkood of o*.

(i) If (F*, 0%, o*) is asymplolically stable af constant
strain and lemperature then (F*, 6%, o¥) is also Lyapunoy
stable under the same conditions® ‘

I (F* 6, o) is asymptotically stable, then,
throughout some neighborhood of o, the only triplet
of the type (F*, 6*, a) that is an equilibrium state
is the one for which e=o*. [If this were not the case,
then in each neighborhood of «* we could find an
% such that a{f)=a satisfies (6.2) and (6.3)- but
not (6.4).] Thus we have the following corollary of
the preceding theorem: Suppose that the material under
consideration is strictly dissipative and let (F*, ¢*, o*)
be an equilibrium state that is asymplotically stable al
-|constant strain and temperature. Then

() The inequality (6.14) kolds in a neighborkood of o,
(i) (F*, 6%, o*) is Lyapunov stable af constant sirain

i \and temperalure.

For the remainder of this section we assume that
corresponding to each strain-temperature pair {F*, )
-[there is exactly one internal state vector o* such that
1(6.1) holds, ie., such that the triplet (F*, 6%, o*)
forms an equilibrium state for the material at X. The

function
ot = & (F*, §%) (6.17)

determined by this correspondence may be called the
equilibrium response function for «. Using (5.15) and
(4.4) we may construct equilibrium response functions
W*, 4%, 8* and §. These functions give the equilib-
tium free energy y*, entropy n*, stress 8%, and heat
flux g* as functions of only F* and ¢*:

= (B, 09 =J(F*, 6%, &*(F, %),
TH=4%(F*, 0*)=4(F*, 6*, &*(F*, %),
S*=8%(F*, 0 =8 (F*, &, &*(F*, %), .
=G (B, *)=4(F*, 6%, 0, ¢*(F*, 6*)). (6.13)

* See Ref. 27, Theorem 8.2. .

M Ususlly when one defines asymptotic stability one presup-

poses that the singular point under consideration ie Lyaminov

table, Here, however, we have been considering a concept of
plotic stability that is separate from’ Lyapunov stability.

. {Thus it is worthwhile for us to observe that Lyapunov stability

.. s actually implied by our weak concept of asymptotic stability

hen {6.16) holds.
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Now, ;
aﬁp’.(F: 0) =39¢(F, 9) a)
: +3.4(F, 6, a)-2&(F, 0), (6.19)

and a similar formula holds for dwf. Therefore, the
general entropy relation (5.16) and stress relation
(5.17), when combined with the equation of internal
equilibrium (6.10), yield the equations

7= s (F%, ), (6.20),
S*=ord*(F*, 6%), 621y

and since (6.10) holds at every asymptotically stable
equilibrium state we can assert the following proposi-
tion: If the equilibrium siate corresponding lo (F*, ¢%)
is asymplotically stable, then #*(F*, 6*) iy given by the .
equilibrium entropy relation (6.20) and S*(F*, ¢*) is
géven by the equilibrium stress relation (6.21). T

1t follows from the sentence containing (5.20) that
whenever (6.10) holds we have, for all g,

d(F*, 0%, g, «*)-g<0. (6.22)

Hence this inequality holds for all g whenever (F*, ¢, o*)
is asymptotically stable. The tensor '

K(F*, 6*) = —3,4(F*, ¢*, g, «*) oo (6.23)

may be called the equilibrizm thermal-conductivily tensor
corresponding’ to (¥*, 6%). Since (6.23) and the last
equation of (6.18) yield :

EAF, 0, g, o) =g-§(F, %) |
= E(F, Megta(lgln), (6.24)
(6.22) holds for all g only if*

qQ*(F*, 6*) =0 (6.25)

2K (F, 641g>0 (6.26)
for all g. This proves the following theorem: Af an
asymplotically stable equilibrium stale e equilibrium
heat flux vanishes and the thermal-conductivity tensor is
tosilive semidefinite,

It is a corollary to this theorem that

"a=4(F*, 0% g *)=K(F*, t)g+o(lg]). (6.27)

Thus, af an asympiotically stable equilibrium state
Fourier’s law holds lo within an error o(] g D.

®This equation can also be obtained using either an argament
iven by Pipkin and Rivlin® or one given by Coleman and Noll*
%;)P 175 and 176). ' )
1 A, C. Pipkin and R. S. Rivlin, Tech. Rept. No. DA 4531/4,
{rgcrsrsn Brown University to the U.S. Army Ordnance Corps,
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7. ‘EN TROPY AS AN
The heat capacity ¢ is defined by®

c=3¢F, 0, o), (7.1)

where ¢ is the response function for the internal energy:

&F, 6, «) =y(F, 6, «)-+-05(F, g, ®). (7.2)
It follows from the entropy relation (5.16) that
c=001(F, 0, o). {(7.3)

Henceforth we assume that ¢ # >0 for all (F, 6, ).

Since ¢ is >0, this implies that 4(F, 4, «) is smoothly -

invertible in @ for each choice of F and e, and we may
rewrite our basic constitutive equations (4.1)~(4.5) in
the forms -

e=F, 3, o), {(74)
0=8(F, 4, o), (7.5
S=S(F, 4, ), (7.6)
q9=9(F, n, g, o), (1.7)
a=£(F, n, g, ). (7.8)

The function §(F, -, ) in (7.5) is just the inverse of
the function §(F, -, @) in (5.15);; the functions g
S, §, and £ are given by

&(F, 3, a)=£(F,_ E(F, 7, o), e)
~¥(F, #(F, 5, @), a)-+4B(F, 7, o,
«} =S(F, §(F, 4, «), ),
4(F,n, ) =§(F, §(F, 4, ), ),
(P, 9, g, «) ={(F, §(F, 5, o), g, o). (r.9)
1t follows from (7.9); and familiar chain rules that
95&=(3n) (3,8) +-G+49,8,
é=def+(3ef) (3r8) -Fnd:?,
Gat=(8F) (2.8) -+ 3uP +10a0.
Hence, the entropy relation (5.16) implies that
. & (F, 0, o) =8(F, 5, o),
dre(F, 1, o) =3f(F, 6, a),
367 (7, 1, @) =3.4(F, 6, o). (7.11)

Of course, the number ¢ in (7.11)25 is just the tem-
perature 6(F, 1, «) corresponding to F, 4, and «.
Equation (7.11); is the expected temperature relation

G=3,i(F, 4, o}, (7.12)
while (7.11); may be combined with (5.17) to obtain

§(F: T

(7.10)

. 7 Since both F and « are held fixed in computing the derivative
in (7.1), the number ¢ may also be called the instantancons specific
feat at constont sirgin {2nd per unit mass), )

entropy are logically equivalent: The equation (7.21)
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INDEPENDENT VARIABLE the following form of the siress relation:

S=0pi(F, 7, @). (7.13)
It follows from (7.11); and (7.9)s4 that the general
dissipation inequality (5.14) may be written in the form
#I(F, 7, )04(F, 1, «)-¥(F,n, g, o) ’
+4(F, , g, @)-g<0, (7.14)~
and, in particular, o
T=0=3.F, n,u)-{(F, 7, g, ©)<0  (7.15)

which is useful for materials which do not conduct

heat. Of course we also have the following counterpart
of (5.19): .

9.&F, 5, o) -f{F, 7,0, a) <0, (7.16).

According to the definition laid down in Sec. 6, a
triplet (F*, 6*, o*) is called an equilibrium state of
the material at X if and only if it obeys (6.1) at X,
It follows, however, from (7.9)¢ that ‘this definition
is equivalent to asserting that the triplet (F*, 5*, o*)
with

PO @), =HE, 0, (L17)
characlerizes an equilibrium state if and only if .
f(F*, 1,0, *)=0, (7.18)

When (7.18) holds we define the domain of atlraction of
(F*, »*, o*) at constant strain and enlropy to be the
set D(F*, #*, o*) of internal state vectors o such that
the solution «= a(#) of the initial value problem

a=HF%, 7,0,¢), «(O=a, (7.19)

exists for all £2>0 and approaches e* as f—s o, We say
that (F*, #*, o¥) is_asymplotically stable ot consiant
slrain and entropy it D(F*, 4*, «*) contains a neighbor-
hood of o*,

Since it follows from (7.16) that éF*, 4 () is
a decreasing function of ¢ along all solutions of ( 7.19),
the argument which gave us (6.8) here tells us that
for each o in D(F*, n*, o)

E(F*: 71*; “)ZE(F*J ’T*) “*)' (7'20)
In particular, if (F*, 4%, o*) characterizes an equilib-

“rizne state that is as ymplotically stable at constant strain

ond enlropy, thei- (7.20) holds for all « in some neighbor-
hood of «*, and

Oué(F*, 4%, &) amas=0. (7.21)

It of course follows from (7.11); that (7.21) and
(6.10) - are equivalent, i.c., are just different forms of
the same equation for o*. This does nol, however,
imply that the concepts of stability at constant strain-
and temperzture and stability at constant strain and
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ot {6.10) is a necessary, but not a sufficient, condition
for these two types of stability. :

We say that a triplet (F*, #*, o*) obeying (7.18)
characterizes a state that is Lyapunon stable af constant
strain end entropy if for each €>0 there exists a §,>0
such that every solution = a(f) of (7.1%)1 having
| «(0) — o* | <5, also has. | e(f) — «* | <e for all £>0.
The following proposition is an immediate conseguence
of (7.16) and the theory? of Lyapunov functions: If
(F*, #*, o*) obeys (1.18) and has the property thal for
all w in some neighborhood of «* - .

(F*, 0%, @) > &«F*, 9%, «*) " whenever as< of, (7.22)

then (F*, n*, o*) characterizes a stale that is Lyapunoy
stable al conslant strain and enlrapy. -

It follows from (7.11), (7.9),, and the proposition
containing (6.16) that ¢ malerial is Striclly dissipalive
if end only if : :

dae(F*, ¥, a) H{F* 7% 0, o) <0 (7.23)
whenever (F*, n*, «) does not chardclerize an equilibrivm
stale.

The last proposition of this section follows from
arguments completely analogous to arguments used
in Sec. 6: If (F*, o*, o¥) obeys (7.18) and if (7.23)
holds for all aso* in some neighborhood of o*, then
the ineguality (722) is a necessary and sufficient con-
dition for the stale characterized by (F*, 4%, o%) 1o be
asymptotically slable af constent strain and entropy.

8. INTERNAL ENERGY AS AN INDEPENDENT
’ VARIABLE

The temperature relation (7.12) and our assumption
that § is strictly positive imply that the function Z in
(7.4) is smoothly invertible in its sccond variable 4.
Hence there exists a function % such that

1=#(F, ¢, @), (8.1)

and putting .
' 8(F, ¢ o) =8(F, i(F, ¢, a), @),
S(F, ¢, o) =8(F, 7(F, ¢ o), o),
a(F, ¢ o) =§(F, 7(F, ¢, o), «).
£(F, ¢, o) =F(F, 5(F, ¢, w), o), (8.2)

we can write the constitutive equations \/.5)~(7.8)
as follows: _
8=8(F, ¢, o),

S—-—"é(F, € @),
4=4(F, ¢ g, o),
a=1{(F, ¢ g, «).
The cquations (7.4) and (8.1) imply that
latﬁ = (G,E) -,
I+ (0.7) (3rE) =0,
(33 {(2a8) 047 =0.

(8.3)
(8.4)
(8.5)
(8.6)

(8.7)

Ir follows from the first two of these relations that
(7.12) and (7.13) can be written in the forms

6=[34(F, ¢, &) T, (8.8)

S=—3:ii(F, ¢, @)} /0:(F, ¢, ) = —09:5(F, ¢; o). (8.9}
¥rom (8.7)s, (8.9), and (7.11); we obtain
3,7(F, é, w) =—89,&F, n, )

= —'3.5(F, 6, a), {8.10)
and hence (7.16) becomes _
3.7(F, ¢, e} I(F, ¢, 0, a)>0. (8.11)

1t follows from (8.2), that a triplet (F*, »*, o*)
characterizes an equilibrium state, i.c., obeys (7.18)
if and only if the triplet {F*, &, «*) with

e*‘:'é(F*: 7% “*): ’ 'q*=—‘ﬁ(F*:, &, o), (8.12)

obeys the relation

(P, &, 0, o*) =0. (8.13)°

When such is the case, the domain of allraction -of
(F*, &, o*) af constant strain and encrgy is the set
D(F*, ¢, o*) of all internal-state vectors @ with
the property that the solution a= «(f) of the initial
value problem .

a=F(F*, 4,0, 1), a0)=w, (8.14)

exists for all £20 and converges to o* as i~—co. We
say (F*, &, of) is asympiolically stable af consinnt
strain and energy if D(F*, &, «*) contains a neighbor-
hood of «*. If for each ¢ 0 there exists a 8.2 @ such that
| «(0)—o*| <8, implies | o(f) —o* | <e for all £>0,
then we say that (F*, ¢*, o*) is Lyapunoy stable at

" constant strain and energy.

The next two theorems follow from (8.11).
If « is in the domain of aliraction of (F*, *, %)
then .
(F*, &, ) <H(FY, &, o), (8.15)

Hence, if (F*, ¢, o*) is asymplotically stable at con-
sland sirain and energy, (8.15) must hold throughont
some neighborhood of * and '

aaﬁ(F*) f*; u'5)[‘:»—@‘:‘:). (3.16)

(It follows from (8.10) that the equations (6.10),
(7.21), and (8.16), giving necessary conditions for
three distinct types of stability that an equilibrium
state may manifest, are equivalent. ] :

If (F*, ¢, o*) obeys (8.13) and if for all « in some
neighborhood of o*

F{E*, e*, a) <j(F* %, ") whenever awa*, (8.17)

then (F*, &, «) is Lyapunov stable al constant sirain
and energy.
We may conclude from (8.10), {8.2),, and the re-
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. ‘mark containing (7.23) that ke malerial under con-

sideration is siricily dissipative if and only if
B, 5(F*, E*_’ a) £(F*, ¢*, 0, ) >0

whenever £{F*, ¢, 0, o) %0,

Using arguments given in Sec. 6 one can easily
prove the following proposition which is similar to
the last assertion of Sec. 7: If (F*, ¢, o*) obeys (8.13)
and if (8.18) holds for all as¢ o* in a neighborkood of o,
then (8.17) supplies & necessary and sufficient condition
Jor (F*, &, o*) bo be asymplotically stable af constant
strain and energy. '

(8.18)

2
9. RELATION OF ISOTHERMAL TO ISENTROPIC
AND ISOENERGETIC STABILITY

Let (F* 6% o*) be an equilibrium state for the
material at X, and let

=9, 6%, o¥), o)
=i, 1, o). (92)

Assuming that the strong fortas {6.16), (7.23), and
(8.18) of the internal dissipation inequality hold, we
here show that asymptotic stability of the state
(F*, &*, o*) at constant strain and temperature implies
asymptotic stability of the same state at constant
strain and entropy, and that this latter type of sta-
bility is eguivalent to stability at constant strain and
energy. To prove the first implication we make use
of our assumption that the heat capacity ¢ of Eqs.
(7.1) and (7.3} is positive, ie, that

0e5(F, 0, &) >0 (9.3)

for all F, 8, and «. Using the entropy relation (5.16),
we can write (9.3) in the form

9(F, 8, @) <0, (9.4)

which implies that, for each pair (F, ), ¢(F, 6, «)
must be a concave function of #:

‘p(F: 8, o) '-_'p(F; ¥, o)

—{(0—0)0f(F, ¢, «) <0, (9.5)
or, equivalently,

B, 0, ) 2E(F, 6, @) +(0—0)4(F, ¢, o). (9.6)

Using (9.6) we now prove the following lemma:

If o* is given by (9.1) then
€F*, n*, a) —2(F*, 9*, o*)
2P(F*, 6%, o) —P(F*, 6, o), (9.7)
It follows from. (7.9), that )
H(F*, %, @) —E(F%, 7%, ) =$ (", (P, 1%, a), «)
~P(F*, 6%, o*)+[B(FY, 2*, o) —F % (9.8)

By (9-6); L
YP(F*, ﬁ(F': 7, a), “)256(?: 6*, o) :
+O*—FF, %, )T, Y 1%, @), @) (99)

© But

A (F*, b‘(F*: 7, o), o) =y*, {9.10)

and, therefore, when (9.9) is added to (9.8) the resuit-
ing inequality reduces to (9.7). '
Using (9.7) we now establish the following theorem:
Let (F*, 0%, o*) be an equilibrium state, let 4* be given
by (9.1), and assume that the sirong forms (6.16) and
(7.23) of the internal dissipation inequality hold for oll
at o* in some neighborhood of oF. If the state (F*, 6%, o)
is esymplotically stable af constant strain and tempera-

ture, then this stale is asymplotically stable al constant

sirain and eniropy.

Proof: Let (F*, 6%, o*) be asymptotically stable at
constant strain and femperature, Since we here assume
that (6.16) holds for all e o* in 2 neighborhood of «,

it follows from conclusion (i) of the theorem on p. 603

(Sec. 6) that for @ in a neighborhood (a*) of o*
o = J(F*, 0%, o) >P(F*, 6% o*). (9.11)

It is clear from our lemma (9.7), that (9.11) has the
consequence that for « in 91{ o*) .

aa*=> ¢(FY, %, o) > e(F*, 4%, o*). (9.12)

But, since we here also assume (7.23), we may observe
that the last sentence of Sec. 7 tells us that {(9.12)
is a sufficient condition for asymptotic stability at
constant strain and enfropy of the state characterized
by (F* 4%, o), ie., the'state (F¥, %, o), and this
completes the proof,

To show the equivalence of isentropic and isoener-
getic stability we first show that if & =(F*, 5*, o*),
then - ) ’ .
€ <HF*, %, o) if and only if 5(F*, &, o) <y*. (9.13)

Indeed, it follows from (8.1) and the positivity of
§ that §i(F, ¢ «) is a strictly increasing function of e
and hence - .

& <E(E*, o, w) if and only if 5(F*, &, o¥)

<H(EF* {F*, 0, o), ). (9.14)

But since the function §(F, -, «) is the inverse of the
function &(F, -, o}, we have, for each value of o,

ﬁ(F*: E(F*: ﬂ*: “)-f “)=ﬂ*r (9~15)

and therefore (9.14) implies (9.13),

Our desired result is now an immediate consequence
of (9.13) and the concluding sentences of Secs. 7 and 8:
Wihen the'sirong forms (1.23) and (8.18) of the internal
dissipation inequality hold for all as¢ o* in ¢ neighborhood
of of, an equilibrium slate is asymplotically stable al
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consiant stroin and entropy if and only if it is asymp-
totically sieble af constant strain and energy.

10. IRTEGRAL DISSIPATION INEQUALITIES

In a body undergoing an arbitrary thermodynamic
process, we may consider, at a given material point,
the following general dissipation integrals® defined for
any two tmes §<<f:

5(t, &) = f:{S-F—né—(pe)—lq-g;dt, (10.0)
3 ) =[ (SF+0i— () igldr,  (102)

¥ty b)) = f‘ "e—r{s-ir—e-(po)—:q-gm. (10.3)

It follows immediately from the law (3.2) of positive
production of entropy and the expressions (3.3} and
(3.8) for v that :

(h, f0) 2P () —y k),
I{t, to) = e{tr) —e(to),
3, 1) Zalte) —nlt). (10.4)

The theory we have been developing here can be
brought closer to the theory of materials with fading
memory* % by adding assumptions about the sta-
bility of solutions of the differential equation governing
the evolution of the internal state vector «. For the
remainder of this section we assume the following
stability postulate:

Corresponding to eack pair (F*,6*) there is an inlernal
state vector o which makes (F*, 6*, «*) an equilibrium
slate that is asymplotically stable in the large at conslant
slrain and lemperature.

In other words, we assume that given (F*, é"‘) there
exists at least one «* such that (F*, ¢*, o*) obeys
(6.1) .and also such that every solution of (6.2) obeys
(6.4},

This postulate has the following consequences.

(i) Corresponding lo each pair (F*, 6*) there is exacily
one equilibrinm stale (F*, 6%, o*)., .

(i) Al each equilibrium state (F*, 6%, o), the in-
equalities (6.9), (7.20), afid (8.15) hold for all o with
7" and €* given by (9.1) and (9.2).

To demonstraté Conclusion (i} we need merely note
that if to a given pair (F*, 6*) there corresponded two
cquilibrium states (F*, 8%, «*) and (F*, 0%, o),
both obeying (6.1} with o*> «t, then «(t) = «f would

7 Qur present I, #, and g differ only in the terms containing ¢
from the functionals whick Coleman (on- pp. 27, 35, and 39 of
Ref. 15) calls “dissipation integrals.” )
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be a solution of (6.2), and, by our stability postulate,
we would have a(f)—a*, which is impossible since
w(f) = const o*, Conclusion (i) is an immediate con-
sequence of (9.7), (9.13), and the séntence following
6.8). - :

The stability postulate is not a consequence of the
Claustus-Duhem. inequality but is rather an inde-
pendent hypothesis expected to hold for some materials
but not all. Under this new postulate a single-valued
function &* relates (F*, 6*) to o, as in (6.17), and
equilibrium response functions {*, #%, etc., may be
defined as in (6.18). Of course (6.20)-(6.27) hold,
and the remark following (6.8) here yields

| F(F, 0, ) 204(F, 6)
for all ‘a.

Consider now a material point X and a time &,
and suppose that at X the triplet (¥, 6, g) has the
following sort of time dependence:

(F(0), 6(8), g(t) y=arbitrary values for 1<f,
=(Fy, &, 0) for 124. (10.5)

At the time /4, the internal state vector « will have 2
value a, determined, through the differential equation
(4.5), by the histories of F, ¢, and g up to time 4 and
some initial data for «. Although we may not know
the value of «, we do know that for t>4, «(f) will
be the solution of (6.2) corresponding to the initial
condition @(f) = a. Since, by our present stebility
hypothesis, ell solutions of (6.2) must approach «*=
&* (¥, 6} we have

limu:(t) = &*(F@, 60) .
fvc

(10.5)

{10.7)

Therefore, it follows from the (tacitly assumed) con-
tinuity of &, 4, T, §, and the equations (5.18) and
(6.25), that at the point X

i () =Timf (s, 6, (6) ) =9* (B, ),
limy (2) =Em# (T, 6, a(#))=5*(F, &),
i+ -+

EmT () =EmT (o, &, «())=1t. 5, 6),
1«0 -1

limg(£) =lmq(Fs, 6, 9, «(f) )= (10.8)
-4 w0 . . .

When a history up to some time 1, is extended beyond
Iy in the manner Yustrated in {10.6), we call the resuli-
ing extended history the isotkermal static comtinuation
of the original history. Equation (10.8) shows, in
effect, that in any isothermal static cositinuation of an
arbilrary lisiory, the free energy, enfropy, siress, and
heat flux oll approach their equilibrium values as 1
increases without limit, Moreover, the first of these limits
18 approached monotonically, for (3.9) here yields

(<0, forall >4 {10.9)
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The relations (10.5) and (10.8); tell us that the
iheorem on minimum free energy, originally proven for
materials with memory,® has the following form in
the present theory, provided we assume that equilib-
rium solutions of (6.2) are stable in the large: Of all
Jistories ending with given values of ¥ and 6, the constant
history with g held fxed af zero and F and 0 held fixed
ol the given values gives rise to the leas! free energy.

Thus, our new stability postulate gives the present
theory many, but not all, the qualitative properties of
Colernan’s® theory of materials with memory.

Let us now return to the dissipation integrals defiried
in (10.1)-(10.3) and consider processes which start
from an cquilibrium state, i.e., processes for which we
have at X, )

T F(fo) =F’r. 8(10) 23*,

wlly) = o*= &*(F*, §*), (10.10)
but for which F, 8, and g at X are given by arbitrary
functions F{1}, (s}, g{t) for >f. For each such
process, at X )

¥t} ={F*, 0, o*), {10.11)
HN=EFW®, 000, «() for >, (10.12)

where «(f} is to be obtained by solving the differential
equaticn (4.5) with the initial condition «(f) = o*.
If F and @ return to their initial values F* and ¢* at
some time h>f;, then .

‘;’(tl) E#:(F*’ 8*) ﬂ(t;[) ): (10'13)

and this equation, when set alongside of (10.11) and
the corisequence (i} of our stability postulate, implies
that ¥ (f) is greater than (&),

F(t)=F*  6() =0*=y(L)<y(h). (10.14)

Of course, (10.10) implies that
e(lo) =2(F*, 6*, o*)=&=2(F", 1%, o), (10.15)
(k) =H(F* 6, ) mp*=#(F*, &, o*). (10.16)
If it should happen that F(tlj =F* and 13([;) =x* then
e(b) =&(F*, v*, olh)), (10.17)

and, therefore, by (10.15) and the consequence (ii)
of the stability postulate,

F(h)=F, q(h)=yr= 6(10)5.6(11). {10.18)
Similarly, -
F(h)=F*,  e(h)=¢=>n(l)>n(t). (10.19)

Combining (10.13), (10.18), and (10.19) with the
inequalities (10.4), we obtain the following theorem
on dissipation infegrals™:

Under the stability postulate stated above each of the

¥ Reference 15, Theorem 3, p. 26, . ) R

W For the corresponding theorem for materials with fading
memory see Remarks 17, 24, and 32 on pp. 27, 36, and 39 of
Rel. 15, .
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follmoin.g,implica!ions holds for processes which star! al
&y froms an equilibrium stale of the type (10.30), but which
are otherwise arbitrary:

F()=F(t), 6(t) =6(h)=3(t, )20,
F(h)=F{t), =) =n{t)=> 9(t, £)2>0,
F(h)=F{h), e(t)=e(t)=28C(h, t)=0. (10.20)

We call a process tsothermal at X if 6=0 at X,
isentropic if 5=0 at X, and isoenergeiic if é=0 at X.
It is.clear from (10.1)-(10.3), that the theorem just
proven has the foliowing corollary yielding inequalities
for integrals of the stress power in special cyclic
processes™: Consider a process slarting from an equilid-
rium state of the type (10.10) and for which the iempera-
ture gradient g is zera for L <SI<h. If the process is
either isothermal or isentropic, then

- ‘ A
Fi)=Fw=[ S: P20  (1021)
- )]

If the process is isoenergelic, then

L1 .
F{h)=F(t) = [ :—7 S-Fdi=>0. (10.22)
to

il. TEMPERATURES ASSOCIATED WITH
INTERNAL STATES

We here suppose that the first M of the N internal
state variables o; have the same dimension as the
specific internal energy e. Putting

M
EA=€— &0,
i=1

(1.1) -

and

(11.2)

we call e the specific internal energy of the active mode
and ai, i=1, 2, «++, M, the specific inlernal energy of
the ith infernal {or “hidden”™) mode. Defining the func-
tion 4* by

g= {aﬂf+1: Qg 20, Ct.v!,

- o A
7*(F, en, 0, 20+, ar, B)=#(F, 4t D, e, ), (11.3)
. feml

we put
Ba=[21*(F, s, 01, =+, 00, BT, (114}
. 9;-‘—-‘[3,:77*-(1?, €4, 1, v, 6)]_11 (11.5)

for =1, 2, «+o) M, We refer to 8, as the iranslational
temperaturc {or the lemperature of the aclive mode) and
to 6: as the fem terature of the ith mode. We may observe
that the “temperature of the ith mode” need not be
positive. In foct, as there is at this point no reason to
suppose that d,47%70, we must not rule out the pos-
sibility of 6; being infinite,

% For waterials with fading memory, analogous resulls are
given in Theorem 4, Remark 2.5, and Remark 3.3 of Rel. 15,

s e e ama e e




Since (11.3) yields
_ _ (11.6)
the temperature relation (8.8) implies that “the fem-

perature” 0 is equal lo the tronslational lemperature 0,:
o 0=0,. (1.7

It also follows from (11.3) that fori=1,2, «++, M,
G =adaug, (11.8)

Oyt =93,

- and hence we have the following expression for each 6;:

8 1=014-3,.7(F, ¢, a). (11.9)

This formula when combined with (8.16) implies the
following theorem: A¢ an asymplotically stable equilib.
rium stale the lemperature 6; of eack inlernal mode is
equal to the translational temperature 0.

tion that each 6; is strictly positive when the material
"is close to a state of stable equilibrium,
By (111},

) M
¢=0if and only if éa+ ) &=0; (11.10)
. =1
hence (8.6), (8.11), and (11.9) yield
€4
7 +

o .
Eﬂﬂ 20 whenever ¢=0, g=0, and (=0,
1 0

- {11.11)
The'inequélity (11.11) appears to be in accord with

) intuitive prejudices about properties to be expected

of temperatures associated with internal modes,
Suppose now that the function 3* defined in (11.3)
has the specia} form

) ar
’?‘(F: €4y @1y v, Oy, G) =14 (F; €4, 6)+ Z "’Ji(F: as).
. vl

(11.12)

Then 8=6, is g'iveﬁ by a function §* of (F, «,, 8},
while each 6; is given by a function 8,* of only (F, a,);
for (11.4), (11,5), and (11.12) yield

0=6%F, cs, B) =[0,mu(F, 4, £) T, (11.13)
8;=0;“(F, aa) =[6.,,11.-(F,.a.')3". A (11'14)

Let us assume, in addition, that there exists a function
& which asigns to each pair (F*, 6*) an o*, asin (6.17),
such that the triplet (F*, #*, «*) constitutes an equi-
librium state for the material point under considera-
tion. As we saw in the.conclusion (i) of the first theorem
of Sec. 10; this assumption is a consequence of the
stability hypothesis of Sec. 10. If we write (6.17) in

" This result should be compared with Trucsdell’s theorem
about the compatibility of fotl with partial caloric equations of
state for mixtures: C. Truesdell, Rend. Limcei 22, 33, 158 (1957),
Theorem IV,
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the form™

. af=aX(FY, 6%, i=1,2,---,N, (11.15)

then the fact that §=6; at states of stable equilibrium
implies :

B (R, aX(F*, 64))=6,  i=1,2, -, M. (11.16)

Since -(11.16) must hold for all (F*, 6*), 6:4(F*, -)
is a left inverse of *(F*, -}. If we assume, as we shall,
that for every pair (F, ;) we can find a @ such that
a;=8*(F, 8), then we have the following theorem:
If the stability postulate of Sec. 10 holds and if the caloric
equation of state (8.1) can be cast in the special form
(11.12), then for each 1, i=1, 2, «++, M, and for each
Sixed F, the function 8,%(F, +) is the inverse of the function
&“*(F, .)_ . -

We may use the foregoing theorem to motivate an
alternative definition of internal mode temperatures
which is free from the assumption that the «,% have
the same dimension as thespecific internal energy.
To do this let us drop the assumption that the func-
tion #* defined in (11.3) has the special form (11.12),
but suppose that the first M of the functions #.* of
(11.15) are such that, for each value of F, a*(F, 00
is an invertible function of 8, i.e., that there exist M
functions ¢;* such that

$:*(F, a*(F, 0))=0 (11.17)

for all 8>0. When this condition is fulfilled the func-
tion ¢:* is uniquely determined by the function &*
and hence by the function f on the right side of the
constitutive equation (4.5). We call the value

&=¢:*(F, a;) (11.18)

of ¢:* at an arbitrary pair (F, «;) the lemperature of
the ith mode corresponding to (F, ;). We continye
to refer to the number entering the constitutive equa-
tions (5.15), (4.4), and (4.5} as the lranslational tem-
perature. As an immediate consequence of (11.17) ‘we
have the following proposition: Eack ¢; shares with 6:
the property of beivig equal 1o the translational lemperature
8 in slates of stable equilibrium.

Unfortunately, the function ¢:* is not, in general,
identical to the function (8,27%)1; Although #;=¢; =0
at equilibrium, we can expect to have €3¢, away
from equilibrium, except, of course, when n* has .the
special form (11.12). As a matter of fact, if &* were
equal to [3.,7%], then we could conclude from {11.18)
that d.,7* must be independent of ¢, and Qs, vy,
and hence that .

ﬂ.(F: €4, v, ay) ":’Tl(Fr ay) +’72(Fn €4, aryy vy, “.'\‘) +
’ (11.19)

Thus we have the following result: A necessary condition
that ‘

di*=[da ] (11.20)




i

610 B. D. COLEMAN AND M. E. GURTIN

is that the function 4* have the special form (11.19).
A similar result holds for ay, a3, ete.

In view of the fact that temperatures of internal
states are often regarded as definable only in terms of
statistical concepts, we think it worthwhile to make the

following observation. The resuits of this section sug-.

gest that if we accept the general assumptions made
bere and in Secs. 4 and S, then the question of whether
we can associate a temperature §; with a particular
internal state variable «; becomes one that can be
settled on purely phenomenological grounds, namely by
inspection of the caloric equation of state and the
equation governing. the evolution of a; in a thermo-

- dynamic process.

12. OBJECTIVITY

In Sec. 5 we found the restrictions placed on the

response functions ¢, 4, S, §, and f of (4.1)~(4.5)
by the postulate of positive production of entropy.
The principle of material frame indifference,® which
states that an admissible process must remain ad-
missible after a change of frame, imposes further re-

strictions on response functions.

In our present theory a change of frame is charac-
terized by a time-dependent otthogonal tensor Q. The
scalars 6, ¢ , and ¥ are unaffected by a change of
frame, but F, g, q, and T transform as follows:

F-QF,
g—~Qg,
Qg
" T-QTQT. (12.1)

The manner in which the internal state vector a=
(e, *++, ay) transforms under a change of frame
depends, of course, on the physical interpretation given
to the components «: of « and therefore varies with
the application in mind. For definiteness we assume
here that « is an ordered N-tuple of scalars, each of
which remains invariant upon a change of frame; i.e.,
we assume that simultaneously with (12.1) we have

e—ra. . 5 {12.2)

(This is the case, for example, when each a; represents
the degree of advancement of a chemical reaction, the
fraction of the total energy in a certain internal mode
of molecular motion, or the probability that an internal
degree of freedom is in 2 particular quantum state.)
It follows from (12.2} that the response functions of the
present theory are compatible with material frame
indifference if and only if they obey, for each orthogenal

2 W, Noll; Arch. Rational Mech. Analysis 2, 197 (1958), who
called it the ‘principle of objectivity of material properties ™

tensor Q, the-following identities in F, 6, o, and g:
$(F, 0, ) =(QF, 4, o),
- #(F, 8, o) =9(QF, 4, «),
Q7(F, 8, ©)QT=T(QF, 0, w),
Q4(¥, 6, ¢, 0) =(QF, 4, Qg, «),
- K(F,6,g o) =f(QF,6,Qg, «).  (12.3)

These identities can be used to derive the following’
reduced forms of our constitutive equations:

y=y1(C, 8, o),
7=9'(C, 6, o),
T=FTYC, §, ))F7, ..
q=Fq'(C, 4, F'g, o),

a=£(C, 0, Fg, o), - (12.4)

where
C=FTF ) K (12.5)

is the right Cauchy-Green lensor; of course, by (2.4)
and (2.5), F7g is just GRAD®. In terms of the response
functions introduced here, the entropy relation (5.16)
may be written :

7= —agp" (12.6)
and the stress relation (5.17) becomes
T=2004". (12.7)

One mignt imagine that in some applications «
could represent a vector of dimension three transforming
as a spatial position vector under a change of frame,
but such an interpretation for w is not compatible
with our constitutive equation (4.5). For, if

= Qu, ' (12.5)

then for each time-dependent orthogonal tensor Q, f
must obey the identity :

(Qa)'=1(QF, 4, Qg, Qq), (129) .
where 4 is given by (4.5). Since . o
(Qu)'=Qe+Qu=Qf(F, 6, g, 0)+-Qq, (12.10)
when Q () =1, (12.9) yields

Qea=0, (12.11)

which equation must hold for all choices of Q at time £
But, when Q (/) =1, the only restriction on. Q) is that
this tensor be skew, Hence (12.11) states that Wa=0
for all skew tensors W, which implies that ¢=0. In
other words, if « behaves as a spaticl three-vector under
changes of frame, then (4.5) must be reploced by the
trivial equations f=0, a=0.




13, MATERIAL SYMMETRY, FLUIDS
. £
‘The symmetry group $ of a material is the set of all

" ponsingular changes of local reference cunfiguration
" . that leave the response functions of the material un-

altered®

Xf we assume that the internal state vatiables a; are
quantities unaffected by the choice of reference con-
figuration, then in our present theory the symmetry

- group § may be identified with the group of all in-

vertible tensors H for which the identities
P(F, 6, o) =§(FH, 6, a),
#(F, 6, ) =4(FH, 6, o),
T(F, 0, o) =T(FH, ¢, «),
@(F, 6, g «)=§(FH, 4,8, o), _
- £(F, 6, g, «)=1(FH, 6, g, «), -(13.1)

hold for all F, 8, o, and g. This group § depends on
the choice of reference configuration, but the sym-
metry group corresponding to two different reference
configurations of the same material are onjugate-and
hence isomorphic. A theorem of Gurtin and Williams®

- tells us that the postulate of positive production of

entropy regquires that $ must be a subgroup of the uni-
modular group; ie., that each H in § must have
{detH | =1. e ' .

- The similarity between the equations (13.1) and the
identities used to define the symmefry group of an
elastic material with heat conduction is striking,2 and
one can immediately apply here many results originally
obtained within the framework of the theory of elastic
materials. For example, using an argument given by
Coleman and Noll* one can easily show that if the
inversion transformation-—1 is in § then '

4(¥, 6,0, ) =0 (13.2)

for all F, 6, and e. Thus, even if (¥, 6, «) is not an
equilibrium state, the presence of —1 in § implies
that the heat flux ¢ vanishes when grad® vanishes.

We do not discuss here the symmetry groups ap-
propriate to the various types of solids. The interested
reader will have little dificulty in extending to our
present subject the known theory of symmetry in finite
elastic deformations.® However, since the theory of

# This is essentizlly a definition due to Noll® who defined the

Focal isolropy group G of a materisl to be the set of density-pre-

serving of local reference configuration which leave the
Tesponse tered. It has recently been shown® that our present
% must reduce to Noll's §. -

® M. E. Gurtin and W, 0, Williams, Arch. Rstional Mech.
Ansalyss 23, 163 (1966). .

i See, for example, Ref, 13, Eq. (3.7).

4 For some pertinent results in that theory see the articles of

Smith snd Rivlin® and Coleman and Noll.4

17; ((.‘v!.ggé)Smith and R. 5. Rivlin; Trans. Am. Math. Soc. 88,
“3B. D, Coleman and W. Noll, Arch. Rational Mech, Analysis

15, 87 (1964). -
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gases with internal molecular relaxation forms an im-
portant special’ case of our present theory, we give the.
réduced-forms taken by our general constitutive equa-
tions when the material under consideration is a fluid.

We say that a materal is a fluid if its symmetry
group § 13 the group U of ol unimodular tensors. The
property of being a fluid is intrinsic to the material
in the sense that §=U for one reference configuration
only if $=9 for all reference configurations, Assuming
that the internal state variables «, obey the “‘scalar

~ transformation rule” (12.2) under changes of frame,

and using arguments now familiar in continuum
mechanics, one can easily show that for ¢ fluid the
Jollowing representation formulas must hold for the re-
sponse functions occurring in lhe identilies (12.3) and
(13.1):. '

(133)

$=¢(v, 8, «),
1=14(v, 8, ), (13.4)
T=—pl, p=p(v, 6, <), -(135)
q=—«g, x=k(v, §, g, @), (13.6)
h a=£(v, 0, g, o). (13.7)

Here v=1/p is the specific volume; g=(g-g)* is the
magnitude of grads; ¢, #, p, & and the components
fo of £ are all scalar-valued response functions; p
and x are called, respectively, the pressure and the
thermal conductivity. Tt follows from (13.3)-(13.5) that
for fluids the entropy relation (5.16) and the stress
relation (5.17) become -

n= "'aﬁp(uy'of o),

=—34(v, 6, a). (13.8)

"When it is more convenient to take the specific entropy

of the fluid, rather than the temperature, as an inde-
perdent variable, we have '

=&y, n, @),
e=ﬁ(": 1, @) =a'|E(U: ™ a),
pﬁﬂ(“’ 13 C() = —'avgn( v, 1, l:t) y (13.9)

and when the specific internal erergy is the preferred
independent variable '

w=iln s o), -
8=§(v, €, a)=[3aﬁ(v, & a_)]_.li

p=p(v, ¢ ) =03,7i(v, ¢, a). (13.10)

It is clear that for fluids all the remarks we made
about stability in Secs. 6-10, remain valid if the modi-
fier “at constant strain” is replaced by “at constant
volume®; i.e,, if the condition that F be constant is
replaced by the weaker condition that v be constant,
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Equation (13.5); asserts that, under the assumption

that each a; transforms as a scalar upon changes of -

frame, for a fluid the stress is always a hydrostatic
pressure. This observation, when combined with the
comments made at the end of Sec. 12, suggests that
the present theory lacks the breadth of applications
-enjoyed by the theory of the tiermodynamics of
materials with fading memory.”s In that theory z fluid
out of equilibrium con exhibit shearing stresses. It
should not, however, be concluded that the present
theory is a trivial special case of the theory of Ref, 135.
Three reasons for this are the following: (a) The ma-
terials we consider here need not obey the principle of
fading memory; in fact, that principle follows from
our present assumptions only affer the addition of very
strong stability assumptions for the differential equa-
tion (4.5). (b) Since g appears in (4.5), for the ma-
terials we consider here the past history of g may in-
fluence -the stress. (c) Those special materials which
are covered by bofl the present theory and the fading
memory theory ean be described in the present theory
with a mathematical language that is somewhat
simpler and which, at the present time, appears closer
to kinetic-theory interpretations (a good example of
such a special case is given in our concluding section).

It is clear that by adding F to the set (F, 6, g o of
independent variables used in (4.1)-(4.5), one can
generalize our present development so as to obtain a
theory in which fluids exhibit shearing stresses and in
which « can be a string of tensors of arbitrary tensorial
rank under changes of frame.% However, such a theory,
since it would mix two.distinct but specidlized concepts
of internal dissipation, would lack both the simplicity
of the present theory and the breadth of the general
theory of materials with fading memory.

14. IDEAL GASES WITH VIBRATIONAL
RELAXATION

We here illustrate our theory with 2 simple special
case: a dilute nondissociating diatomic gas which, al-
though it does not conduct heat and obeys the ideal gas
law ini the form :

pu=RS, (14.1)
with R a constant, can, nonetheless, exhibit dissipa-
tive phenomena due to the finite time required for the
transfer of molecular -motion from the tramslational
mode, where it coutributes to the pressure, to” the
vibrational mode, where it dees not. To place this
familiar theory in our present framework, we first
assume that-the entropy of the gas can be written in

the form .
1=#4{v, ea) +iv(a) =5(v, ¢, a) (14.2)

“ A simple and particularly elegant special case of 2 fluid of
this type, with the internal-state vector o transforming as a

spatial position vector, has been studied by J. L. Ericksen, Kol-
loid-Z, 173, 117 (1960). -
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with

. (14.3)
a is called the vibrational energy, €4 is called the active-
mode energy,® the value ny of 7y is called the vibrational
enlropy, and the value 5y of %4 Is called the active-mode
enfropy. The number ‘

Oa=[0.,7a (v, EA.) Tl . (14.4)
is the franslational (or active-mode) temperature, while

Oy =[0.iv(a) 1= By () (14.5)

is the vibrational lemperature, We now add the usual
assumption that « obeys a scalar differential equation
of the type (13.7) with £ independent of g and linear

in ag¥

e=esta;

a=A(v, 6) ~B(v, fe. (14.6)

If we assume that the temperature @ obeys a con-
stitutive equation of the form 0=8(y, ¢, a), then the
present theory based on the constitutive relations
(14.1)-(14.3) and (14.5) clearly falls as 2 special case
of the theory of fluids obeying (13.3)-(13.10). (Of
course, here the internal-state vector « has just the
onc componesnt ) We may therefore conclude from
(13.10)2,, (14.2), (14.3), and (14.4) that

=074 (U: 5&):
0=8,.

(14.7)
(14.8)

Thus in this theory “the temperature” @ must be identi-
fied with the translational temperature §,. This fact
has already been established in 2 much more general
context; indeed, (14.8) is an'immediate consequerice of
the remark containing (11.7). We may conclude from
the theorem following {11.9) that in a stable equilib-
tium state the vibrational temperature 8y is equal to
the translational temperature 6.

Noting that (14.1) and (14.7) imply the partial
differential equation

vd,fia (v, e4) =R, (14.9)

“Or; at length, “the specific internal energy of the active
ode.’ ’

T This b thesis, which differs only slightl{e'l:om a postulate
studied by Herzfeld and Ricel® in 1928, has been discussed by
Rutgers,* Kneser,® Landsu and Teller,® Bethe and Teller,?

m

- Rubin and Shuler," Montrolt and Shuler,¥ arid others, The studies

of Rubin and Shuler* and Montroll and Shuler® indicate that
since (14.6) holds precisely for a barmonic-oscillator model, it
should hold near to equilibrium for more general models. See
also Ref, 53.
# A. 1. Rutgers, Ann. Physik 16, 350 (1933).
# £, O. Kneser, Aon. Physik 16, 360 (1933).
(1;316‘) Landau and E. Teller, Physik. Z. Sowjctunion 10, 34
' R. J. Rubin and K. E. Shuler, J. Chem. Phys. 25, 59 (1956).
(l;s]é.) W. Montroll and K. E. Shuler, J. Chem. Phys. 26, 454
BW, G. Vincenti and C. H, Kruger, Introduction lo Classicel
Ggs. amics (Jobn Wiley & Sons, Inc., New York, 1965).
Chap. 7.
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we see that 74 must have the specia! form _
' na=R Inv-+h(es). (14.10).
Assuming that % is smoothly invertible, we can write
(14.10) in the form
ea=w(v exp(—ma/R)) .
=wa(v expi[iiv(a) —]/R})
) =¥y, 5, ) —a.

It follows from (13.9); and (14.11) that

0= RV’ (v exp(—na/R) v exp(—na/R) (14.12)

with the prime indicating the derivative; hence 8'is a
function of only vexp(—#4/R). Assuming that this
function is invertible, we may solve (14.12) for

v exp(-—na/R) in terms of  and write (14.11) in the
form

(14.11)

ea=¥:(0). '

Thus, the active-mode energy is here a function of the
translational temperature alone.

We now add the natural assumptions that « is.

always positive and that the differential equation (14.6)

obeys the stability postulate discussed in Sec. 10.

‘These assumptions imply that (14.6) can be written
in the form

a=k(v, 8) (v, §) —a), (_14.14)

with the functions & and I positive. Furthermore, the
function / in (14.14) here plays the role of the equilib-
rium response function &* in (6.17): For each pair
(v*, 6*) the vibrational energy o* given by

o =[{v*, %)
makes (v*, 6%, o*) an equilibrium state,

(14.15)
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Let us now assume that for each a and v we can
find a ¢ such that a=1(v, 8). It is then a direct conse-
quence of the theorem following (11.16) that for each
fixed v the function f defined in (14.5) is the inverse
of the function I(v, +). Hence I(v, 8) must be inde-
pendent of v,

v, 8) =1(6),

Or=Fi(a), ie., Bp=I,

with the function ! the inverse of 1. :
Equations (14.3), (14.13), (14.15), and (14.16)
imply that the value * of the specific internal energy
of the gas when it is in equilibrium with temperature
6" and specific volume v* is independent of v*; in fact,

=4 (%) -1(6%). (14.1R)%
In view of (14.16), we can write (14.14) in the form

{14.16) .
and

(14.17)

de=k(v; 0)[0) —oc], (14.19)
where ‘ .
E(v,8) >0, o) >0. {14.20)
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¥ Since the equilibrium Fressure P* is just RE*/v*, to prove
that ¢* is & function of ¢* alone we could have used an argument
similer to that giving us (14.13). Ia this instance the proof would
proceed exactly as it does for an idesl gas without relaxation

efiects, in which context the proof is spelled. out in detail by R.
Courant and K. O. Friedrichs, Stepersonic Flow and Shock Wares

» (Interscience Publishers, Inc., New York, 1948), pp..8, 9.




