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Noting that:
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and multiplying by T > 0, we obtain:
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The Clausius—Duhem inequality is obtained by introducing a new
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Method of local state

inclination of the authors, and richness because it allows the formulation of
the theories to be adopted to the study of one or more phenomena, either
coupled or uncoupled, depending on the intended use.

2.4.1  Srate variables

The method of local state postulates that the thermodynamic state of a
material medium at a given point and instant is completely defined by the

variable, the specific free energy ¥ defined by:
Y=e¢~Ts
Differentiating this, we obtain:

d¥ _de ds sd—T i ds de d¥ dT
de de “dr T dt & di- \Nar
which, when substituted in the first term of the fundamental inequality,

yields:

d¥ dT grad T
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. p( dr JrSdr) T .

For small perturbations, the above may be written as:

—
. grad T
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or

by —p¥ +3T)— fh_.}: = 0.

24 Method of local state

In order to avoid any confusion in the reader’s mind, it is time to summarize
the variables used to describe the thermomechanical behaviour of solids.
The concept of thermodynamic potential will clarify everything! However,
before giving its definition, a choice must be made with regard to the nature
of the variables. In this choice lic both the weakness and the richness of
the method of phenomenological thermodynamics: weakness because the
choice is partly subjective and results in different models depending on the

which depend only upon the point considered. Since the time derivatives of
these variables are not involved in the definition of the state, this hypothesis
implies that any evolution can be considered as a succession of equilibrium
states. Therefore, ultrarapid phenomena for which the time scales of the
evolutions are of the same order as the relaxation time for a return to
thermodynamic equilibrium (atomic vibrations) are excluded from this
theory’s field of application. Physical phenomena can be described with a
precision which depends on the choice of the nature and the number of state
variables. The processes defined in this way will be thermodynamically
admissible if, at any instant of the evolution, the Clausius—Duhem
inequality is satisfied. The state variables, also called thermodynamic or
independent variables, are the observable variables and the internal
variables.

Observable variables

The formalism of continuum mechanics and thermodynamics as developed
above requires the existence of a certain number of state variables; these are
the observable variables:

the temperature T
the total strain £ (assuming small strains).

We limit ourselves to the two observable variables as they are the only
ones which occur in elasticity, viscoelasticity, plasticity, viscoplasticity,
damage and fracture phenomena. For reversible (or elastic) phenomena, at
every instant of time, the state depends uniquely on these variables. For
example, the reversible power is defined with the help of the associated
Slress o as:

O, =0a:E
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[nternal variables

For dissipative phenomena, the current state also depends on the past
history which is represented, in the method of local state, by the values g
each instant of other variables called internal variables,

Plasticity and viscoplasticity require the introduction of the plastic (or
viscoplastic) strain as a variable. For smal] strains, the plastic strain g is the
permanent strain associated with the relaxed configuration. This configur.
ation is obtained by ‘clastic unloading’, leading to the additive straip
decomposition:

Method of local state

e“{is on {I]}Se, dl) [ 1 5 1 1 & i}. i,‘:

¥ =W, T, €5 eP V). f
ici 1 in the form o
Jastoplasticity (or viscoplasticity) the strains appear only
e . o e t:
I:eir additive decomposition £ —£" = £°, 50 tha

W= W((e — &), T, V,) = W5, T, Vi)

which shows that:
aV e = dV/de = — lik Jli

— =P

The two internal variables related to the above decomposition may
formally be defined as: the plastic strain &°, and the thermoelastic strain g*
(including, as well, the possibility of thermal dilatation).

Other phenomena such as hardening, damage, [racture, require the
introduction of other internal variables of a less obvious nature. These
represent the internal state of matter (density of dislocations, crystalline
microstructure, configuration of microcracks and cavities, etc.) and there
are no means of measuring them by direct observation. They do not appear
explicitly either in the conservation laws or in the statement of the second
principle of thermodynamics. They are called internal variables, but in fact,
they are state variables which will be treated as observable ones.

There is no objective way of choosing the nature of the internal variables
best suited to the study of a phenomenon. The choice is dictated by
experience, physical feeling and very often by the type of application. They
will be defined in the different chapters as the need arises, For their general
study, they will be denoted by Vi, Vayoo s Vs Vi representing either a
scalar or a tensorial variable.

242 Thermodynamic potential, state laws

Once the state variables have been defined, we postulate the existence of a
thermodynamic potential from which the state laws can be derived.
Without entering into the details, let us say that the specification of a
function with a scalar value, concave with respect to 7, and convex with
respect to other variables, allows us to satisfy a priori the conditions of
thermodynamic stability imposed by the inequalities that can be derived
from the second principle. It is possible to work in an equivalent way with
different potentials. Here we choose the free specific energy potential W,

We now use the Clausius—Duhem inequality with:

to obtain: )
g A\ - v g sy @
e ' — |\ T—p——+V,—~— grad T=0.
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For this to happen, it is necessary to consider that the elastic ey
] . .
c:aOnr occur at a time scale higher that those which would qfuijs.npnmw
validity of the hypothesis of local state, and lowe_r than those DdI |:212; 2
phenomena. Since the Clausius—-Duhem inequality holds regardle

particular £¢, it necessarily follows that:
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i i tion in
A ing this equality to hold, we now Imagine a thﬁjrmal d.eforma i n
?ﬁ“:‘_pg 0, V, =0, grad T =0. Then,since T is arbitrary, it follows that:
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s+ d¥/eT=0.
These expressions define the thermoelastic laws:
® o = p(\V/de"),
s=—¢V/eT.
We note that:
o = p(d¥/de%) = p(d¥/de) = — LAY [0eP)
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which shows that the stress is a variable associated with the elastic strain,
with the total strain, and with the plastic strain (with a minus sign).

In an analogous manner, we define the thermodynamic forces associated
with the internal variables by:

A, = p(dV¥/dV,).
These relations constitute the state laws;

the entropy s and the stress tensor ¢ having been defined elsewhere,
the specification of the thermodynamic potential ¥(e5, T, V,)
furnishes the coupled or uncoupled theories of thermo-
elasticity;— - e

in contrast, the variables A, associated with the internal variables,
which have not yet been introduced, are defined by the specific-
ation of the thermodynamic potential ¥(..., V,);

s, 6 and A4,,4,,..., A, constitute the associated variables. The
vector formed by these variables is the gradient of the function ¥ in
the space of the variables T, ¢, V,. This vector is normal to the
surface ¥ = constant.

The associated variables form a set of normal variables in duality with
the observable and internal state variables. Table 2.2 summarizes the set of
variables introduced in this way.

2.4.3  Dissipation, complementary laws

As we have seen, the thermodynamic potential allows us to write relations
between observable state variables and associated variables. However, for
internal variables it allows only the definition of their associated variables.
In order to describe the dissipation process, mainly the evolution of the
internal variables, a complementary formalism is needed. This is precisely
the objective of the dissipation potentials.

Intrinsic dissipation, thermal dissipation

— ‘
Taking into account the state laws and putting g = grad T, the Clausius-
Duhem inequality can be reduced to express the fact that dissipation is
necessarily positive:

® =08~ A4V, —GG/T=0.

We note that @ is a sum of the products of the force variables or dual

Method of local state

Table 2.2. Thermodynamic variables

State variables

Observabhle Internal

Associated variables
§_ o
i 5
£ o
ef -_—
M Ay

variables 6, A,, § with the respective flux variables £°, — Ij’,‘.. —g/T. Tl
sum of the first two terms: |

D, =0:" — A, V,

is ca]‘Ied the intrinsic dissipation (or mechanical dissipation). It consists «
plastic dissipation plus the dissipation associated with the evolution of t}

other internal variables: it is generally dissipated by the volume element
the form of heat. The last term:

(D = —-_"E';-:—E' T
2 F!T TEFEdT

is the thermal dissipation due to the conduction of heat.

Dissipation potential

In order to define the complementary laws related to the dissipatior
proccs‘& we postulate the existence of a dissipation potential (or pseudo-
potential) epfpressed as a continuous and convex scalar valued function ol
the flux variabjes, wherein the state variables may appear as parameters:

P(EPV,, G/T).
This ial is : g :
potentialis a positive convex function with g zero value at the origin of

the space ; P Ty
e ziu of the flux variables, £°, IV, 4/T. The complementary laws are
pressed by the normality property (or normal dissipativity):

The
thermody o —
Rormaj ¢ odynamic forces are the components of the vector grad 7]
0 the ¢ = —— : 5
the ¢ = constant surfaces in the space of the flux variables.
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In fact, the complementary laws are more easily expressed in the form of
the evolution laws of flux variables as functions of dual variables, The
Legendre-Fenchel transformation enables us to define the corresponding
potential ¢* (e, A, g), the dual of ¢ with respect to the variables &P, l'/k and
q/T. By definition:

oo Aug)= Sup (@8 — AV —GG/T) = oV, G/T))
by
The transformation, written in a slightly clumsy form, is illustrated
graphically in Fig. 2.4 in which only one variable has been retained.

[t can be shown that, if the function @* is differentiable, the normality
property is preserved for the variables &, —V,, — /T, and the
complementary laws of evolution can then be written as:

@ P =7op*/lo,
. - I'}k =0p*/0A,,
B g
® — — =don* 1
T dp*/dy.

Let us note once more the properties that the potentials ¢ and ¢* must
possess for the automatic satisfaction of the second principle of thermody-
namics: they must be nonnegative, convex functions, zero at the origin:
(6 = A, =g = 0). Later, we will generally use the potential ¢* and the rela-

Fig. 24.  Construction of the graph of a potential ¢*(g), dual of @), by the Legendre-
Fenchel transformation.
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Table 2.3. Dissipation variables

Dual variables

Flux variables

P

& a
-V, A,
-4, T g=grad T

tions expressing the evolution of the flux variables. It should be noted that
the normality rule is sufficient to ensure the satisfaction of the second prin-

il

ciple of thermodynamics, but it is not a necessary condition. Thisrule applies
to generalized standard materials. A standard material is defined as that for
which only the first of the above three rules, £€* = dp*/de, applies. This first
relation yiclds the plasticity or viscoplasticity laws. The second equation
expresses the evolution laws of the internal variables, and the third one
leads to the Fourier law of thermostatics. Table 2.3 provides a summary of
the dissipation variables.

The whole problem of modelling a phenomenon lies in the determination
of the analytical expressions for the thermodynamic potential ¥ and for the
dissipation potential ¢ or its dual ¢*, and their identification in character-
istic experiments. In fact the values of ¢ or ¢* are almost impossible to
measure as they represent an energy usually dissipated as heat, The flux
variables and the dual variables are quite easy to measure and it is on their
values that the modelling and identification are based. The complementary
laws of evolution are therefore directly identified but the dissipation
potential is used as a guideline for writing their analytical expression.

It should be noted that one can generalize the dissipation potentials by
including the state variables themselves as parameters. The above develop-
ment is not modified at all. The dissipation potentials are then written as:

P(£P, ka q/T;e5, T, V))
@*(0. A, G;£5, T, V).

S—— ey
variable parameters

Onsager's symmetry relations

A ﬁIT-‘fI simplification consists in assuming that the function @* is of a
Positive-definite quadratic form in terms of the dual variables. Then
denoting the flux variables by ¥, and the dual variables by 4 the potential
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*

©* may be written

{}0* = %Caﬂ(ac! T\ Vk)A:Aﬂ‘

Consequently, under such circumstances, every complementary law of
evolution is linear with respect to the corresponding dual variables:

I./: = C::ﬁA i

The matrix C,; is symmetric. This property is known as Onsager’s
symmetry relation.

Decoupling-of-intrinsic-and-thermal-dissipation——

A second simplification consists in assuming a decoupling of intrinsic and
thermal dissipations. This does not mean that the corresponding physical
mechanisms are decoupled. This assumption amounts to considering the
dissipation potential as the sum of two terms, one dependent on the dual
variables o, A,, and the other on the variable g:

o* = (e, 4) + 03(g)

and the second principle of thermodynamics is satisfied by the following
inequalities respectively:

; : a ot
b, =08 — AV, = 0:6—0_14—;»1,(&330

®,=—4g-

Note that, since ¢* is convex in ¢ and A, and passes through the origin,
the first of the above inequalities 1s automatically satisfied. We then have:

The phenomena of instantaneous dissipation

When the behaviour is independent of the velocities, the function ¢(g°, I"k) is
a positive, homogeneous function of degree 1 and its dual function ¢* 18
nondifferentiable. By extension, we write that £ belongs to the subdifferent-
ial of * defined by:

~ YL SR (1) 3, * ~P. 1
L rp\'onl =1 Epf(p;] = I:pluﬂl i Ep‘[c - U“}‘ VU*‘

T M A

Elements of heat

In addition, we take the convex function of the criterion Slo, A,)
convex, [ =0, has ¢* as an indicator function.

wi

@*=01if f<0—g =
p*=+ 0 if =08 0.

A proof, not given here, allows us to assert that it is equivalent to w

€Pedog and é"=(—::£i if ;=0
) f=0

Jdo
where F is a potential function equal to f in the case of ‘associated’ theo:

and—}:-is-a—multiplier-dctermin'ed'"by‘the consistency condition f = 0.
The equations describing normality have to be replaced by:
& =1(0F/de), —V,=Ai(0F/34,)
or

° e =idf/ds, —V,=idf)oa,

2:5 Elements of heat

2.5.1 Fourier’s law

The law of heat diffusion, or Fourier’s law, expresses a linear relatic
between the heat flux vector q and its dual variable F. This is a dire

consequencc of the two simplifications introduced regarding dissipatic
Potentials. In fact, we let:

¢3=3Cqg
and
_ 4 _ oo = g
T—-—ﬁ- =C'g=C-grad T.
If we n i iffusi i
the ow make the hypothesis that diffusion properties are isotropic fo

ateri i i i
rial under consideration, then the tensor C is reduced to a scala

[e]’]sor . . f
-Moreover, this scalar is considered to vary inversely with respect te

th 2
¢ temperature so that it is possible to write:
® — Sy
g=—kgrad T
or
9= —&T,i



