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1 Introduction

The title of this work emphasizes the basic proposition,
made by Mandel [1] and Kratochvil [2], that constitutive
relations must be provided not only for the plastic rate of
deformation but also for the plastic spin within a macroscopic
formulation of elastoplasticity. This was motivated by the
kinematics of single crystal plasticity where the plastic spin is
routinely specified by microscopic analysis. Such constitutive
relations, however, have not been systematically considered,
derived, and applied within the framework of a Macroscopic
approach for large elastic and plastic deformations, where the
concept of tensorial structure (or internal) variables is utilized
to describe the structure of an anisotropic continuum. This is
the principal objective of the present work. The proposed
general formulation will clearly demonstrate not only the role
of the constitutive relations for the plastic spin, but also the
consequence of elastically embedding (or convecting) the
structure variables. Based on invariance requirements and the
representation theorems for isotropic functions [3], specific
constitutive relations for the plastic spin will be formulated
for different kinds of initial and induced anisotropies, and
their effect illustrated by the analysis of several examples at
large homogeneous deformations.

Tensors will be denoted usually by boldface characters in
direct notation. With the summation convention over
repeated indices implied, the following symbolic operations
appl}": aog = GU'U,"J‘." dig = ﬂi‘;ﬂ'ﬂ. deg = a’_l"(’f:.’" Z]@o = af_,"g.h’!
with proper extension to different order tensors. The prefix ¢r
indicates the trace, a superscript 7 the transpose, subscripts s
and @ the symmetric and antisymmetric parts, and a super-
posed dot, the material time derivative or rate. Under an
orthogonal transformation Q, the notation Q[a] implies the
corresponding transformation of the tensor a, e.g., Q[a] =
QaQ7 if ais of second order.
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The Plastic Spin

A macroscopic formulation of large deformations elastoplasticity with tensorial
structure variables is presented. The novel features are the effect of constitutive
relations for the plastic spin and, ro a lesser degree of importance, of elastically
embedding the structure variables. The Plastic spin constitutive relations are ob-
tained for different kinds of initial and induced anisotropies on the basis of the
representation theorems for isotropic secand-order antisymmetric tensor-valued
Junctions, and their role is illustrated by the analysis of several examples at large
homogeneous deformations.
nonlinear kinematic hardening of the evanescerit memory type provides, on rhe
basis of the second Liapunov merhod Jor stability, conditions on the material
constants for the occurrence or nor of stress osciflations with monotonically in-
creasing shear strain. o

In particular the analysis of simple shear with

2 Kinematics of Structured Media

In a macroscopic approach the collection of microscopic
entities that define what can be called the substructure of a
continuum, can be described by means of tensorial structure
variables defined macroscopically at the current configuration
x. With a relative loss of generality for the sake of simplicity,
the structure variables will be restricted 1o second-order
tensors a, vectors m, and scalars &, collectively denoted by s,
although higher-order tensors can, and must sometimes, be
considered [4]. The state variables, therefore, can be defined
as the Cauchy stress o (temperature is omitted for simplicity)
and the s.

The multiplicative decomposition of the deformation
gradient F into elastic and plastic parts ¥ and P [5] such that
YV = V7 [4], yields

F=VYP (n

The V defines a macroscopically unstressed configuration Koo
which can be visualized as being obtained from « by actual or
virtual (if the stress origin is outside the current vield surface)
unloading without rotation. Motivated by corresponding
concepts of crystal plasticity [6~9], it can be assumed that the
s are elastically embedded so that during the unloading they
are transported at &, as second-order tensors A, vecrors M,
and scalars K, collectively denoted by S. Depending on the
particular physical meaning attributed to each §, the transport
operation can be expressed by different weighted convected
transformations of relative tensors, such as contravariant
A = IVI"V-lay-! M = |V |vy- 'm, covariant A =
IVI"VaV, M = IV I|*mV, and scalar K = |V| "k, where V|
denotes the determinant of Vland w is the weight. Mixed
transformations can also be considered, if appropriate. The
foregoing transport operations will be svmbolized collectively
by § = VJ[s]. The transport of ¢ is defined here as the first
Piola-KirchhofT stress in reference to ko Il = VIV 1oV
Thus, the state variables are defined equivalently either as o
and s at x, or I and § at «, since V will be shown to be a
function of them.

The elastic and plastic rate of transformation (deformation
and rotation) and the rate of S can be thought as taking place
relatively to the substructure defined at Ky by the current



values of 8, including orientation [4], followed by a
simultaneously occurring rigid body spin « in order to ac-
commodate the total material spin W. The set of directions
created by the tensorial nature of S (e.g., the cigenvectors of
second-order tensors), can be considered as the macroscopic
conceptual counterpart of the lattice in single crystals, with
the difference that these directions evolve in general with S.
For easier interpretation, but without being necessary for the
development, the spin w can be associated with the spin of
Mandel's director vectors [1], which at any given instance can
be thought as being attached to the substructure, The concept
of the spin w is of cardinal importance because in reference to
any fixed cartesian coordinate system the aforementioned
rates must be corotational with w. Defining in general for later
use the corotational rates of a tensor a and a vector m with
respect to an antisymmetric tensor 2 by

Da/Dr=a—Na+all, Dm/Dit=m-0m (2)
and denoting by a superposed - the corotational rates with Q

= w, the following basic kinematical relations and definitions
can be written

FF-'=VV- ' 4+ VPP V-1 =+ VV-1 £ VPP-IV-! (3)

D° = (VV-1),, DE=(PP-Y),, D?=(VPP-'V-!), ()
We = (VW-)),, WE=(PP-'),, WP=(VPP-'V-!), (5)
D = D4D?, W=W*'+W?’, W*'=w+We (6)

where V and P are defined according to equations (2), and
(2), with = w, respectively; equation (2), is used for P as if
it were a vector because P is attached to x, by its first index
only [1]. The superscripts e and p refer to elastic and plastic.
The name plastic rate of deformation and plastic spin can be
associated with either Dff and W§ at x;, or D” and W7 at «,
[10]. It is clear from the foregoing development that the
plastic spin expresses the rate of rotation of the continuum
with respect to its substructure. Hence, it becomes meaningful
for anisotropy where the substructure is characterized by
preferred directions.

Anticipating the formulation of the rate constitutive
equations and denoting by superposed * and ¥ the
corotational rates with respect to W* and W (Jaumann rates),
the following kinematical relations can be written for a
representative tensor on the basis of the foregoing kinematics

A= IVI*V-lav-! A= [V|vV-igy-I @

E = ﬁ—aV"V—\DfV “la+watrD =a —aD¢ —D°a
+wairD* (8)

W " i o e v

a=da—-aF TFT—FF-'a+warD=a—aD —Da+watrD

G y . (9

a—a=—aV¥V 'P-TPTV—-VPP 'V -la+warrD" (10)

and similar relations can be stated for other kinds of trans-
ports of tensors, vectors and scalars. In particular Lquations

(?) can be stated in a general symbolic notation as § = V[s],

b =V] 5 ]. The superposed V denotes the convected derivatives
of relative tensors (for w= 1, equation (9) yields the Truesdell
derivative). The superposed O denotes the so-called
corodeformational rate due to the elastic embedding of a and
the simultaneous corotation ofrl both a and V with w, as can be
seen from the use of a and V in equation (8). A final im-
portant point is that under a superposed rigid body
rotation/reflection at « defined by an orthogonal tensor Q,
the P, V, and w become QP, QVQ’, and QuwQ’ + QQ7,
correspondingly, because x, must also rotate/reflect by Q
based on the definition of V. Hence, one can show that the a,
s, I1, S, and all rates defined in equations (4), (5), (7)-(9),
transform only by rotation/reflection under Q.
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3 Constitutive Formulation

J.1 Rate Equations. With a scalar loading index X for 5
state satisfying a yield criterion, both to be defined in (he
sequel, the following rate equations can be stated

D = <A>NE(ILS), WE=<r>Q(ILS) (11
S = <A>S(ILS) (12)

Il

with <A> = Nif A>0land <A> = 0if A=<0. The use of § in
equation (12) follows dlreuly from the discussion preceding
equation (2). Based on the transformation law under
superposed rigid body rotation/reflection, the corresponding
invariance requirements render Nf, @ and S 150tr0pu
functions of their arguments IT and S (definition in Ap-
pendix). Clearly this does not imply in general that th
material is isotropic due to the tensorial nature of § [4]. ln
troducing the definitions

NP =(VINE +Q5)V ), Q7= (V(N§+Q5)V ),
equations (4), (5), and (11) yield

DP = <A>NP(ILS), WP =<A>07(11,8) (14)

where again N” and Q7 are isotropic functions of II and S.

Similarly one can use relations such as (7)-(9) in conjunction

with equations (11) and (14) in order to express equation (12)

in terms of rates associated with the values s at «. For

example, the following set of equivalent forms for the rate
equations of a applies

(13)

A = <A>AJLS) or (15a)
A = <A>3 with A= IVI*"V-1av-1, or (15b)
=\; = <A>(a—(aN”+N7a)+ (a) —Q7a) + warrN?)  (13¢)

Equation (I15b) can be written in general for any s as s[.] =
<A>3 with § = V[s] when 8 = VJ[s], For small elastic
deformations one has ¥ =1 (identity tensor), hence ll=¢, S=5
and equation (12) can be written as

§ = <A>3(s,5), orequivalently (16a)
A = <A>@+alf—07a), m=<\>(m-0"m),

k=<\>k (16b)

withs = {a, m, &} isotropic functions of o and s, and where

the transition from equation (16a) to (16b) is based on w =
W —W#, valid for ¥ =1, In equations (15¢) and (16b) observe
the clear distinction between the purely constitutive parts 2,
m, and the remaining terms due to the kinematics, where the
role of the plastic spin|via 97 is clearly demonstrated. If 2
tensorial structure variable is purely orientational (such as 2
preferred direction of the substructure), one must set S = 0 0r
equivalently a = 0, m = 0. The Almansi plastic strain A? =
(1/2)y I-P-"P ') can be used, if appropriate, as one of
the S, and can be shown that A? = <A>[N{-
(A”NE + NFA”) — (AP Qf — A AL)], consistent with equation
(15a). A different plastic deformation measure A7, which 15
not a true strain measure, could be defined by integration of

A? = D" and used as one of the S.

3.2 Elastic Relations With hlahltlpldbtlc Coupling and/or
Damage. Denoting by E¢ = (1/2)(¥* —I) the Green elastic
strain, pp the mass density at x, and = ‘.;{Il §) the com-
plementary free energy per unit mass, lSO[l‘OplC function ot
and S (invariance), the elastic relations can be obtained from
E¢ = py(dy/all). Since E¢ (and V) is also isotropic function of
Il and S, the relation (A1) of the Appendix can be applied
for E¢ = VDV which in conjunction with equation (12) and
the foregoing kinematics yields
_tihe ACME
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e = B 4+Ec=£0 T+ <A>N§ (174)
D¢ = D/ +D‘ =€ '+ <A>N¢ (17b)
g" = (pod*y/an@an ',

o= W1 W Vg Vi Vsl s (17¢)

V-INSY - 1=p,V (92 9/aTI@S) s SV ' — A trNY
(17ch)

where A® = VIE®V !, E is defined by equation (8) with
w=1 and o instead of a, and £ are the incremental elastic
moduli. The D" and D* represent the incrementally reversible
and clastoplastic coupling or damage induced components of
D¢ al &, counterparts of Er and E¢ atk,. The trN? in equation
(17d) appears due to the mass conservation relation
po +ootrD? = 0 at &,. The evolution of tensorial S can alter
ipitial elastic symmetries, unless S=0 (purely orientational)
in which case one can still have N¢ =0 if trN” %0, equation
(174d).

Z
Il

3.3 Yield Criterion, Loading Index, and Final Form. A
macroscopically smooth yield criterion together with its
symmetric stress gradient can be defined by

flo,s)=0, N"=(df/d0); (18)

with f an isotropic function of ¢, s due to invariance
requirements. The dependence of f on the current values g, s
a1 « is motivated by corresponding formulations in crystal
plasticity [6-9] where a resolved shear stress yield threshold 7
i defined by f = men --7 = 0, withm and n vectors along the
slip and normal to slip plane directions at x, and which could
be considered as being unit vectors at ky [9]. In the same spirit
one can express N# and 97 directly as isotropic functions of ¢
and s. Equivalent expressions for f in terms of quantities
defined at k, are possible, but a slight advantage of equation
(18), is that f can be determined in principle without requiring
an elastic unloading 10 &, (possibly only virtual). Since the s
depend on o due to their elastic embedding, one expects that
the loading direction will divert from N” in a way that will be
precisely defined in the sequel.

Due to the isotropy of f, the consistency condition f = 0 be
expressed according to equation, (42) of the Appendix in
rerms of the corotational rates ¢, s, which in turn can be
expressed in terms of o and Eb}f means of equations similar to
(8) with D* obtained from equation (17b), vielding

o Ny (0 38) 5= (N7 = Z0:£ 7 )i+ N(@//09)+5

—ZNy=0 (19)
Use of similar equations to (155) was made for E and Z" is
defined in the following equation (25). Equation (19)

. . a i o ¢ i
determines the loading index A in terms of . On the basis of

equations (6),, (14), (178), (19), and utilizing equation (10)
. i . o, v
with w= 1 and e instead of a in order to express o 1n (erms of o

(similarly defined from equation (9) with w = 1 and a = a),
the final form for a statc on f = 0is given by

D = £1:54 <A>(N 4 NO)= € Tio+ <A>N'=A"lo
(20)
N N:g B N:ﬁ
T H+Z'NC  H+ZN+N:ZP
N:L:D
= (21)

T H+N: LN+ NTGNC

(LINIB(NL)

A= L£-hN——-2 = i (22)
- HA+N:LNS e NLN
N’ = N'+N —£ 127, N=N"*—ZmL),
H= —(3f/ds)58 (23)
7 = —(UN”+N”U)+(ﬂﬂ*”—ﬂ”u]-i—crr?\'" (24
77 = —{(oN"+Ng)+(N":p)l+T (25)
Cafr af N ar
r = i(a’—_f—ﬁr-—iia") i(,—f@}m)
da da s am .
a
+“‘( 2y '5)1 (26)
as

with A(A) the heavyside step function defined as zero at A=0,
and + or — in eguation (26) when a, m arc transported from
x 10 &, by a covariant or contravariant transformation,
respectively, of weight w. The I' encompasses the effect of
elastically embedding the s. Many of the features observed in
equations (20)-(26) are the macroscopic counterparts of well-
established results in microscopic crystal plasticity theories,
but appear to be novel in a macroscopic formulation with
tensorial structure variables: For example, the Z7 and Z"
divert the irreversible rate of deformation and loading
directions from N7 +N* and N, to N’ and N, respectively,
the diversions being of the order stress/elastic moduli. In fact
one could broadly associate the N”, N, and N7 +1 V¢ with the
guantities P’, Q, and P defined in [7]. With £ the plastic
modulus, the denominator of the third member of equation
(21) corresponds to what is called the effective hardening
modulus [11] due to geometrical and elastoplastic coupling
(and/or damage) effects expressed by N:Z/ and Z":N',
respectively. The elastoplastic coupling effect has not been
considered in [7, 11]. It is possible to have N =0 with
N7 = 0¥ =0 in which case /= 0 acts only as a damage criterion.
Certain differences in relation to the aforementioned
references are due to the use of differcnt stress rates. In fact
one can change the stress rate by properly modifying the
elastic moduli and the values of Z” and Z". For example,
a&;suming for simplicity that N°=0, the Jaumann ratc
7= o+ atrD of the Kirchhoff stress 7 = ¢, but 7 = o+ atrD),

can be used instead of o by setting Z7 = o — o+ afrNP |
7" = (N":¢) I+T and employing elastic moduli obtained
by adding the quantity (1/2)(Oy 0y + b0y + 0504 + byay) 10
L.y, 8, being the Kronecker delta. For small elastic defor-
mations V =1and the effect of elastic embedding is negligible.
The corresponding equations can be obtained from equations
(20)-(23) by substituting g and o for ¢ and o, respectively, and
setting Z" = 0, 27 = ofi¥ —Q"0, as obtained directly in [12].
If only the volumetric elastic deformation is finite, onc has
V= IVII and all the foregoing relations must be moditied
accordingly.

4 The Plastic Spin

In a sequence of recent papers [12-14] the author was the
first (o use the representation theorems for isotropic functions
[3] in conjunction with the concept of tensorial structure
variables to provide explicit forms of constitutive relations for
the plastic spin. Independently Loret [15] obtained similar
results. Subsequently the main results presented in [12-14]
will be briefly summarized and supplemented by a number of
new observations. For simplicity small elastic deformations
will be considered, i.e., I=gand 5 =s.

With A defined from equation (21), the constitutive relation
for W depends on 27, equation (14). In the case of one
symmelric tensor structure variable a, the €, being an
isotropic function of ¢ and 4, can be represented by (3]



0 = m{aa—a‘a}-tn:{aza—aﬂ:)+n3(uu3—n:a)
+ mna(aea’ —alga) + ns(oag® — o7 10) (27)
where the n’s are scalar functions (not necessarily

polynomial) of the well-known isotropic invariants of ¢, a and
any other scalar structure variable k (e.g., equivalent plastic
strain). Clearly, the deviatoric parts ¢’ and a’ can substitute o
and a in equation (27), by redefining the »;. Ifag = sali.e, o
and a are coaxial), which includes as a special case the
isotropic one witha’ = 0, it follows that ¥ = 0 even for an
anisotropic material. This conclusion can be extended to finite
olastic deformations; with AIT = TIA it follows that 2§ = 0
and that V and Nff commute (same principal directions as A
and IT). Hence, from equations (13) one has N? = Nf and ©¥
— 0. The requirement of continuous transition from
anisotropy to isotropy and vice-versa is satisfied if the suf-
ficient conditions fimy(a’)i = 0 as a’' —0 are imposed, with
v, the corresponding exponents in equation (27). For a single
generator this is also a necessary condition. A discontinuous
¢ at a’ = 0 will cause a corresponding discontinuity in @
since it appears in the definition of A, equation (22), and of A
in terms of ¢, equation (21), via the terms involving Z7. 1t was
suggested in [12-14] to use the first only generator of equation
(27) as a first approximation. The “intensity’’ of the plastic
spin for a given e onf = 0 depends on the »;, the norm of a
and the degree of noncoaxiality between ¢ and a, as it can
gasily be seen by employing the spectral representation for ¢
and a in equation (27).

For orthotropic symmetries along three orthonormal
yectors n;, fi,, Ny the structure variables (purely orientational)
can be defined by a; = n, @n, and a; =n,®n,, (16, 17]. On
the basis of [3] the @ can be represented by

Q7 = p(a,o0—0ay)+ (20— ony) + 132, o2y —a,02;)

+

nala, o —otay) + 15(a,0% —0ay)

+ ye(oa,0* — 0*a,0) + ;08,07 — 072, 0) (28)
with 7, functions of tre, (ra, ire’, tra o, (rayo, tra o, tra, @,
[16], and any other scalar structure variable. Denoting by a
superposed ~  the tensor components in reference to a car-
tesian coordinate system X = [X,, X2, X3} along the axes of
orthotropy, and assuming that Q¥ is represented by the first
three generators only in equation (28) which are linear in @,
one obtains A, = njd2, U3 = N384, 18y = 718 with =
na, ma=my and p3i=m =Mt aNs. Defining N’ from the
associated flow rule N# =(8f/do) with f given by Hill’s or-
thotropic yield criterion [18]

f=A(a)) — o3)* +Blon — b33)? + Clays — 501)* + D% +Edi,

+Fo}—k*=0 (29)

it follows based on the foregoing that

5 W s gom M B & oA
Wi, = 2—;' Di,, wﬂz:‘iE_D’?n: Wie, = z—b'Dﬁ (30)

When the ¢’ changes sign, and still is on f = 0, one expects on
physical grounds (sign change of microscopic resolved shear
stresses and corresponding shear strain rates) that so does W#,
hence the n;"s must be even functions of ¢’ . If the orthotropy
has the same “‘intensity’”’ along X, and X, onc expects that
Wi, = 0, thus 53 = 0. Similarly for ns and ;. For the fifth
class of transverse isotropy characterized by n, along X, the
structure variable is a, =n, ®n, [16, 17]. The Q7 is obtained
from equation (28) by settingn, = 73 = ns = M7 = 0, and the
yield criterion from equation (29) with A = C,E=Fand D
= 2(A +2B). Using only generators linear in g, equation (30)
applies with £ = F, n{ = Oand 73 = ni = n,. For this case

%ﬁ

observe that the value n,/2F = 1 can be associated with a
unidirectionally fiber-reinforced material with X, along the
fibers’ direction, under the kinematical restriction that plastic
shear cannot occur by slip on planes perpendicular to x,.
Similarly the value 7,/2F = —1 can be visualized as the case
of a deck of cards with ¥, normal to their planes and where
slip is not permitted on planes parallel to X.

5 Kinematic Hardening and Simple Shear

Within the framework of the general development, the
following kinematic hardening constitutive model can be
proposed

f = @/ —a)e’ —a)—k*=0 (31
D? = <A>n, n=(3/2)"(o' —a)/k, mn=1 (32)
W2 = <A>q(ac’ —o'@)=(1/2)p(aD’ — D a) (33)

8 = <A>((2/3)h,n—(2/3)%c,a)=(2/3)h, D7

—((2/3)D”:D"Yic, o (34)

where clearly f, D#, W#, and & are isotropic functions of the
ctate variables ¢', a« and k, the a represents the usual
deviatoric back-stress tensor and k is constant or variable
(isotropic hardening). Equation (34) is the finite deformation
version of the kinematic hardening rule with evanescent
memory originally proposed in [19]. It introduces the positive
material constants #, and ¢, which can be calibrated from oy,
= x[k+(h,/c.) [1—exp(—¢ le” 1)]]Jobtained from equation
(31) and integration of equation r84) for uniaxial loading with
¢’ the corresponding logarithmic plastic strain. The key
equation (33) is obtained from equations (27) and (32) using
the first generator only, as originally suggested in [14]. It
introduces the material parameter p, by setting n, =
(3/2) " (p/2k), which has the dimensions of (stress) ! and is
isotropic function of o' (or ¢’ — @), @, k and any other scalar
structure variable such as the equivalent plastic strain, so that
lim(pa) = 0 as a—0. Expecting that W* changes sign when
o' —a does, p must be an even function of e’ —a.

The proposed constitutive model will be used for the
analysis of simple shear ¥y defined by the velocity gradient
components

DJ.::DZ].:W”:'—WH::}(/?., DUziV[.f:O forotherf,f
(35)

The simple shear analysis has been presented qualitatively,
numerically, and analytically for a variety of kinematic
hardening models and corotational rates for o [12, 14, 15,
20-24]. In particular the phenomenon of stress oscillations
with increasing 7, first reported in [20], prompted in-
vestigations on the role of model constants that remained
Jargely numerical or qualitative. In the spirit of [12, 14],
where the analytical solution for ¢, = 0 was provided, suf-
ficient and necessary conditions on k,, ¢, and o for the
occurrence or not of 'such oscillations will be rigorously
obtained by analytical means, as well as closed-form ex-
pressions on the stress limits as Iyl —oe.

Assuming for simplicity a rigid-plastic response, constant

k, aj+op =0, a3 /= an =0 and o;; = 0, equations
(31)-(34) and (35) yield (12, 14]
gy =0 = —0p= "0 0p=0n +Sgrl“'y{k/\.’f3) (36)

and o, = 0y = 0, with sgny = signof % and the evolution of
@, a2 governed by the system of nonlinear differential
equations

day, /dy= -—sgnﬁr((‘,/\.@)a“ +(1 — pay)a) (37a)
dewyy/dy = —sgnil(e, /N3y = (1= par)ayy +(1/3), (37b)
If the assumptions ay; +ay; = 0and o33 = 0 were not made,
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Back-stress trajectories in simple shear for kinematic har
dening with evanescent memory and different values of p. Stress
quantities are normalized by k.

Fig. 1

one would have obtained a{, = «,, 07; = @2, 033 = @ =
-2(‘!{,), a, = 3(2{ +) +a[_] + 033, O3 = 3&:,_}_(.1'{_3 + 0314
withe,) = () +a)/2 = af,exp(—c, lIv1/V3) and o,
= (a)) —y2)/2 substituting «y, in equations (37). Observe
that the quantity (¥/2)(1 — pe,;) represents the w;, component
of the spin w = W—W?, [12], which suggests on physical
grounds that p=0 because otherwise the « would be
“greater’’ than W at the first stage of simple shear. Observe
also that by setting ¢, = 0 and p = (2/tre®)”* = (aj,
+al,) =" the formulation proposed in [22] is obtained, but
the continuity requirement lim(pa) = 0 as «—0 is violated.
Henceforth, p will be considered constant. For monotonic
change of ~, such that sen4 = sgny, and p = 0 which implies
the use of Jaumann rates in equation (34), the solution of
equations (37) can be obtained in closed form as

ay = [h,/G+eD)I—exp(—c, ly1/V3)(cosy
(¢,/~3)sin Iy )]

+
+ exp(—c, Iy1/33)(a? cosy + alysiny)

(38a)
ap = [(sgnyh./G+c)ll(c,/~3)
+ exp(—e¢, lyl/v3)sin Iy | = (c,/v/3)cosy)]
— exp(—c, byl /~N3)(), siny — af,cosy) (38h)

with f|, afs the values at v = 0. For p>0 the stability of the
system (37) will be first investigated. By standard methods it
can be shown that a unique equilibrium point ef,, «f, (in fact
two such points exist depending on the sgny) is given by

af, = (1/3p)[2+(Vg—p)'"* —(3Ng+p)'?]
af; = sgny(e,/N3ag, /(1 - paf))

(39a)
(390)
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Fig. 2 (a,b) Stress:strain in simple shear for kinematic hardening
with evanescent memory and different values of p. Stress quantities are
normalized by k.

p = 33— (1/2)ph,+(1/3)], =1/’

+(c2+ph, —1)%] (39¢)
under the condition g >0 which is sufficient and necessary for
o}, to be the unique recal root of the cubic equation
(€2/3)as, /(1 —pas)) = plaf))? —af, +(1/3)h,. A standard
investigation of the signs of the left and right-hand sides of
this equation, and the fact that the other two roots are
complex, yield 0 <af, <1/p. Multiplying now equations (37)
by sgny=sgny (monotonic change of ), observing that d ||
= sgnydy and transferring the origin at af,, af, without
changing notation for the «;,, a,, for simplicity, equations
(37) become

day,/dlyl = '[{Cr/\"{.g’}ull‘/[l_ﬂ'ull‘])}
+sgny[(1 — paf))ays — payag) (40a)
dop/dlyl = —(c,/V3a,; +seny[(Zeat, = Day, + pai, ]

(40b)

Considering the Liapunov function U = (1/2){(a7, + i), use
of equations (40) yields dU/d Iyl = —(c,/~3(1 — paf Naj, —
(c,/v3)ad, + (sgny)pat, oy a2, quadratic in ayy, .. For
asymptotic convergence of the system (40) in the whole it
suffices to have g>0 (for uniqueness of «f;) and
dU/d |yl <0. On the basis of the sufficient and necessary
Sylvester’s criterion for negative definiteness ([25], the
dUsd Iyl <0 requires that |- paf, >0, already satistied as
shown carlier, and c?>(3/4)p%(a})*(1 —paf). Observing
that the maximum value of the right-hand side of the last
inequality is 1/9 for af, = 2/3p, and based on the value of g,



equation (39¢),, a stronger but simpler and not unduly
restrictive sufficient condition for convergence in the whole is

¢,>1/3 and (41)

With »,,r, the roots and A the discriminant of the charac-
teristic equation of the linear approximation of the system
(40), it can be shown that py+v: <0, v, vy >0, under the
previous conditions, and

A=(1/3)c2p () +4(1 — per§y ) (2paty = 1) (42)

Because the origin is not a center for the system (40) and its
linear approximation, their phase portraits are qualitatively
equivalent. Hence, provided that g>0 and the aforemen-
tioned Sylvester’s criterion condition, or the stronger con-
ditions (41), are satisfied, and with afj, given by equation
(394}, the sufficient and necessary condition on /1, c,, and p
for which no stress oscillations occur is A=0, in which case
the equilibrium pointis a stable node (inflected if A=0), while
for A<0 the equilibrium point is a stable spiral and stress
oscillations occur.

Ilustration of the foregoing is shown in Figs. 1 and 2(a,b)
obtained by numerical integration of equations (37) together
with equations (36) for sgny>0. The numerical values of all
stress quantities are normalized by k. The values /1, = 3 and
¢, = v3 used in the computation, were found to describe
sufficiently well the uniaxial response of commercially pure
aluminum. For such values the relations (41) are clearly
satisfied for any p. Figure 1 shows the back-stress trajectories
beginning at «f, = 0 and different !, while Fig. 2(a,b)
shows the stress-strain response for afy = 'y = 0. The o)
can be measured from the broken line of Fig. 2(M
corresponding to gz = (1/3/3). The effect of the different
values of p (normalized by k 1) is clearly demonstrated, and
becomes pronounced for y=1, approximately. Using
equations (39), (42) and the assumed values of /1, ¢, itcan be
computed that A=0 for p=0.92, hence, no oscillations occur
for p=1,2 in the graphs of Fig. 2.

ci+ph, >1

6 Plane Stress for Orthotropic Symmetries

Assume that the orthotropic axes ¥, X; form an angle 0
with the fixed axes x|, X,, measured positive counterclockwise
from x, to X, and that x; = X;. Assuming rigid-plastic
response, the yield criterion (29), 05 = 0, the associated {low
rule and the simple shear velocity gradient (35), the stress
components in reference to X are given by

G /B=—0/C= .,/ (X/ Ftan2f)) = (k/R)sgnysgnsin20  (43)
and 5 = 0y =0, with X = AB+BC+CA and R =
[X(B+ C+ (X/Ftan®20))] % The interesting problem is to
find the law of evolution of 6. Based on equation (30);, one
has W%, = Wi, = (93/2FDyy = (ni/4F)ycos2d, where W7,
= W7, due to the plane transformation. The unit vector n;
along x, is a purely orientational structure yariable and ac-
cording to equation (168), one, has n, = —W'n,
(equivalently one may consider the a, according to equation
(16h),). Hence, based on the values of Wy, W%, and the cosd,
sin&’?componcms of n, in reference to x,, X1, the expression
for n; yields

df/dv=(1/2)[(n};/2F)cos20 - 1] (44)
As || increases either an equilibrium orientation #, =
(1/2)cos ~'(2F/q3) is asympotically reached if 12F/n3l =1, or
the axes X, X- rotate indefinitely.

As a second example consider a velocity gradient defined by
Dy, =Dy, Dy = —(Dy +Dx),D;=0 forizj,W;=0 (45)
with 7 a real number. The same assumptions of the preceding
example yield

i/ Q) =622/ Q2 =812/Qs =(k/Q)sgnly, (46)

where O, = 2(1 +nA+(l +r+(l=r)cos20)B, O, = 2l +r
A+ (1 +r—(1—rcos2i)C, Q@ = (X/FH)(r—1sin2fl and Q =
[A(Q, —Q,)* + BQ3 + CQj +FQ3] *. Similarly 1o the
previous case one has W7, .—-vl-i"i’l = (n3/2F)D\; =(n3i/4F)
(r—1)D,,sin20, and since n, = n, because W = 0, the
evolution of n, according to equation (168), is given byn, =
—W¢n, which yields

db/de =(c/2)sin2f, c=(r—Dni/2F  (47)

where e is the basis of the natural logarithm, € the logarithmic
strain along X, 0, the value of ¢ at e = 0, and equation (47),
is obtained from equation (47), if ¢ is constant. Depending on
the signs of tanfly, ¢ and ¢, the axis x, tends to align with the
axis x, or x, as lel increases (forc = 0 = ¢ = 0,). The results
expressed by equations (44) and (47) can be given a plausible
physical interpretation when ni/2F = =1 for the case of
transverse isotropy and the corresponding visualization in
terms of a unidirectionally fiber-reinforced material and a
deck of cards, discussed at the end of Section 4. A detailed
presentation of this case is given in [26].

A remarkable difference exists between the anisotropy
induced by kinematic hardening and the initial orthotropic
one. In the former case the effect of the plastic spin is
pronounced after large strains occurred in order to induce
sufficiently “‘intense’’ anisotropy, while in the latter case the
plastic spin affects the response at the early stage of small to
moderate strains due to the pre-existing orthotropy.

tanf = tanfye*",

7 Discussion and Conclusion

The generality of  the development is partially limited
because of two restrictions. The first is the omission of
tensorial structural variables of higher order than two for
reasons of simplicity. Even under this restriction, a suf-
ficiently realistic set of constitutive models can be obtained.
Including higher-order tensors can certainly be done along the
lines presented in [4, 21]; one should expect then greater
difficulties in their experimental determination and more
complex expressions for the plastic spin and elastic em-
bedding. The second restriction is the assumption of a smooth
yield criterion. While for single crystals there is experimental
and theoretical evidence that corners are induced by the
superposed action of smooth vield criteria, in materials such
as polycrystals for which a macroscopic approach can be
applied, no conclusive experimental evidence of
macroscopically detectable corners exists at present. Should
such evidence become available the present formulation must
be extended appropriately.

Within the aforementioned limitations the present work
achieved its stated objectives, namely to demonstrate the
effect of elastically embedding the structure variables and,
mainly, of the constitutive relations for the plastic spin on &
macroscopic formulation of anisotropic continua. We would
like to emphasize here three points. First, the importance of
the forms of equations (15) and (16) for the evolution laws of
the structure variables, where the purely constitutive part
associated with a, m, § is clearly distinguished from the
kinematical terms associated with N” and Q7. Second, the
form of the constitutive relations for the plastic spin via 97, as
in equation (27), together with the subsequently discussed
continuity requirement as a’—0. And third, the fact that
Mandel’s director vectors are not necessary in general for the
definition of the spin w which simply can be obtained from the
kinematics, equation (6), given the constitutive relation for
W7 . This has not been recognized in the carlier works of the
author [12-14], but has been pointed out in [26]. A number of
additional topics including extension lo rate dependent
viscoplastic response and examples on the effect of elastic
embedding, such as in the single slip theory [7, 9], can be
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found in [27] and [28]; reference [28] provides also more
details on the calculations performed in the present work.

Much can be gained by parallel microscopic studies but
also, vice-versa, the present formulation can scrve as a
guideline for such studies when the bridging of the gap from
micro to macrolevel is attempted by means of proper
averaging procedures, through which macroscopic tensorial
qructure variables emerge. Al present one can attempt Lo
calibrate macroscopically constitutive parameters such as p
and 74 related to the plastic spin, and whose effect was clearly
demonstrated by the theoretical analysis of the cases
p;escn:ed in Sections 5 and 6. For example, the 4, and ¢, for
the kinematic hardening can be first calibrated from the
experimental data of radial deviatoric stress paths (particular
case being the uniaxial) where the plastic spin is zero because
ao' = ¢'a equations (32)-(34); then the value of p can be
determined by fitting experimental data where the plastic spin
is active and affects the stress-strain response, as shown
eloquently in Fig. 2(a,b) for simple shear. The fact that the
aforementioned cases refer to partially idealized situations
cannot be overlooked, but at the same time they should not be
discarded from a practical point of view before actual ex-
perimemal data become available for comparison. Even if
<uch data show the weakness of the idealization, the analysis
of these examples is of value because it illustrates the way of
3pproach for more complex considerations (e.g., more than
one evolving structure -ariables) within the general for-
mulation.

Finally, observe that the general formulation was presented
in terms of the values of the state variables at the current and
relaxed configurations as defined by equation (1). Equivalent
descriptions in reference to other configurations, such as the
isoclinic [1], are also possible; but the important fact is that a
-hange of the mode of description cannot eliminate a physical
necessity such as the requirement of constitutive relations for
the plastic spin.
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APPENDIX

A scalar, vector, or tensor-valued isotropic function f of the
scalar, vector, and tensor-valued variables s, is defined by f(s)
= QIf(Q7[s]] for any orthogonal transformation Q. For such
a function it can be shown that

Dt/ Dt =(81/8s)=(Ds/ Dr)
for corotational rates according 1o equation (2) with respect to
any @ including @ = 0, and with the understanding that D/ Dt
implies the material time derivative tor scalar valued quan-
tities. The proof is based on the fact that one can always write
Q = QQ7 since Q(r) is arbifrary. As an example, for a scalar-
valued isotropic function f(s) = f(Q [s]), one has

U s o[ A o[ 22 _r Ds
/= Q7 [s] Q'lsl=0Q [85} Q [1);]_35 Di

(Al)

=——-58 (~12)
s

The proof for tensor-valued I is longer but similar,

= P LT s



